Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on evaporation from alloys used in microwave vacuum electron devices

Liu Yan-Wen Wang Xiao-Xia Lu Yu-Xin Tian Hong Zhu Hong Meng Ming-Feng Zhao Li Gu Bing

Citation:

Study on evaporation from alloys used in microwave vacuum electron devices

Liu Yan-Wen, Wang Xiao-Xia, Lu Yu-Xin, Tian Hong, Zhu Hong, Meng Ming-Feng, Zhao Li, Gu Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The development of modern satellite communication technologies is imposing higher demands on the lifetime and reliability of the microwave vacuum electronic devices, which directly depend on the evaporation properties of the extensively used Monel and stainless steel. Therefore, it is of vital importance to study the evaporation properties of these two types of metallic materials. For the first time, as far as we know, this paper proposes to study the evaporation properties of metallic materials using time-of-flight mass spectrometer (TOFMS). The components and the contents of the vacuum background, the evaporants from the Monel and from the stainless steel have been measured using the TOFMS, respectively. After the pressure of the measurement chamber is below 4.010-8 Pa, the TOFMS is used for the metallic materials working at different temperatures. They are respectively acquired when the Monel and stainless steel are at room temperature on operate between 750 to 900 ℃ under a pressure of 1.010-6 Pa. The measurements are carried out rapidly and in high sensitivity. As disclosed by the measurements, Mn and Cu began to evaporate when the Monel and the stainless steel are heated to 800 ℃, which is still far below the melting points of the two alloys (1243 ℃ and 1080 ℃). When the Monel and the stainless steel are further heated to 900 ℃, the evaporation of Mn, Cu, and Cr becomes quite considerable. Once the evaporated Mn, Cu, or Cr deposit on the ceramics for the insulation in an electron gun, its insulation will be deteriorated. Hence, the Monel and the stainless steel are not suitable to be use as the components in cathode electron guns, especially those used in the devices that are to work a long lifetime in high vacuum. Moreover, the Monel and the stainless steel are not suitable for used as the components that are often under the electron bombardment, e.g., anodes and collectors, either. The SEM images and XRD of the heat treated surface structures of the Monel and the stainless steel in ultrahigh vacuum (1.010-6 Pa) have also been studied. On heating at 900 ℃ for 30 and 120 min the surface structure and composition change remarkably and a significant reduction in Mn and Cr is visible, and also a large number of holes and crystal boundaries emerge on the surfaces of the two metallic alloys. With increasing heating time, the boundaries will grow larger and larger. As a result, the strength of the two metallic materials becomes weaker and gas permeation and leakage even occur. Therefore, it can be concluded that the components made from Monel and stainless steel, especially those with thin walls, should not be heated to high temperatures in ultrahigh vacuum for a long time. The above phenomena are analyzed in detail theoretically and the proper and feasible application methods of the metallic materials are explored in device design and technological process control. These works are expected to contribute to the prolonging of the lifetimes of the satellites, and will lead to tremendous economic benefits.
      Corresponding author: Liu Yan-Wen, liuyanwen58@sina.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328900).
    [1]

    Liao F J 2006 Acta Electr. Sin. 31 3513 (in Chinese) [廖复疆 2006 电子学报 31 3513]

    [2]

    Zhao P C, Liao C, Feng J 2015 Chin. Phys. B 24 025101

    [3]

    Liu C, Wang Y H 2015 Chin. Phys. B 24 010602

    [4]

    Shin Y M, Barnett L R, Gamzina D 2009 Appl. Phys. Lett. 95 181505

    [5]

    Chu K R 2004 Rev. Mod. Phys. 76 2489

    [6]

    Sirigiri J R, Shaprio M A, Temkin R J 2003 Phys. Rev. Lett. 90 56302

    [7]

    Liu Y W, Wang X X, Zhu H 2013 Acta Phys. Sin. 62 234402 (in Chinese) [刘燕文, 王小霞, 朱虹 2013 62 234402]

    [8]

    Shao W S, Zhang K, Li J, Yan S Q, Chen Q L 2003 Appl. Surf. Sci. 21 554

    [9]

    Liu Y W, Tian H, Han Y 2012 IEEE-Trans. on ED. 59 I36184

    [10]

    Wang J S, Liu W 2008 J. Phys. Chem. Solid 69 2103

    [11]

    Liao F J 1999 Vacuum Electronics (Beijing: Electronics Industry Press) (in Chinese) [廖复疆 1999 真空电子学 (北京: 电子工业出版社)]

    [12]

    Liu Y W, Tian H 2008 Sci. China E 38 1515 (in Chinese) [刘燕文, 田宏 2008 中国科学E 38 1515]

    [13]

    Wang J S, Liu W 2009 IEEE Trans. on ED 56 799

    [14]

    Liu Y W, HanY, Zhao L 2009 Acta. Electr. Sin. 316 1757 (in Chinese) [刘燕文, 韩勇, 赵丽2009 电子学报 316 1757]

    [15]

    Wang X X, Liu Y W 2014 IEEE-Trans. on ED. 61 605

    [16]

    Liu Y W, Wang X X, Tian H 2015 Sci. China Infor. Sci. 45 145 (in Chinese) [刘燕文, 王小霞, 田宏 2015 中国科学 信息科学 45 145]

    [17]

    Liu Y W, Tian H, Han Y 2009 Acta. Phys. Sin. 58 535 (in Chinese) [刘燕文, 田宏, 韩勇 2009 58 535]

    [18]

    Li J, Yu Z Q, Shao W S, Zhang K 2005 Appl. Surf. Sci. 25 151

    [19]

    Wang X X, Liao X H, Luo J R 2008 Acta. Phys. Sin. 57 1924 (in Chinese) [王小霞, 廖显恒, 罗积润 2008 57 1924]

    [20]

    Li X P, Sun S P, Yu Y, et. al. 2015 Chin. Phys. B 24 120502

    [21]

    Liu Y W, Tian H 2008 Sci. China E 51 1497

    [22]

    Zhang M C, Liu Y W, Yu S J 2014 IEEE-Trans. on ED 61 2983

    [23]

    Liu Y W 2006 Vacuum Sci. Tech. 26 240 (in Chinese) [刘燕文 2006 真空科学与技术学报 26 240]

    [24]

    Electronics Industry Technology Pyrometer (Beijing: Nat. defense Industry press) (in Chinese) [电子工业技术手册(4) 1990 (北京: 国防工业出版社)]

    [25]

    Gren M C, Skinner H B and Tuck H A 1981 Appl. Surf. Sci. 8 13

    [26]

    Guo W X 1984 J Electr. Infor.Tech. 6 166 (in Chinese) [郭文湘 1984 电子科学学刊 6 166]

    [27]

    Gotoh T, Hirasawa S and Kinosita K 1982 Thin Solid Film 87 385

    [28]

    Dudley K 1961 Vacuum 1 154

    [29]

    Verhoeven A T and Vandoveren H 1981 Appl. Surf. Sci. 8 95

    [30]

    Wooren L A, Ruehie A E 1955 J. Appl. Phys. 26 44

    [31]

    Mooke G E 1950 Phys. Rev. 77 246

    [32]

    Leverton W F, Sepherd W G 1952 J. Appl. Phys. 23 787

    [33]

    Zhan M Q, Zhang D P, He H B 2004 Chin. J. Lasers 11 1356 (in Chinese) [占美琼, 张东平,贺洪波 2004 中国激光 11 1356]

    [34]

    Liu Y W, Zhang H L 2004 International Vacuum Electronics Conference 214

    [35]

    Cheng Y J, Li D T, Zhang D X 2010 J. Vac. Sci. Technol. 30 54 (in Chinese) [成永军, 李得天, 张涤新 2010 真空科学与技术学报 30 54]

  • [1]

    Liao F J 2006 Acta Electr. Sin. 31 3513 (in Chinese) [廖复疆 2006 电子学报 31 3513]

    [2]

    Zhao P C, Liao C, Feng J 2015 Chin. Phys. B 24 025101

    [3]

    Liu C, Wang Y H 2015 Chin. Phys. B 24 010602

    [4]

    Shin Y M, Barnett L R, Gamzina D 2009 Appl. Phys. Lett. 95 181505

    [5]

    Chu K R 2004 Rev. Mod. Phys. 76 2489

    [6]

    Sirigiri J R, Shaprio M A, Temkin R J 2003 Phys. Rev. Lett. 90 56302

    [7]

    Liu Y W, Wang X X, Zhu H 2013 Acta Phys. Sin. 62 234402 (in Chinese) [刘燕文, 王小霞, 朱虹 2013 62 234402]

    [8]

    Shao W S, Zhang K, Li J, Yan S Q, Chen Q L 2003 Appl. Surf. Sci. 21 554

    [9]

    Liu Y W, Tian H, Han Y 2012 IEEE-Trans. on ED. 59 I36184

    [10]

    Wang J S, Liu W 2008 J. Phys. Chem. Solid 69 2103

    [11]

    Liao F J 1999 Vacuum Electronics (Beijing: Electronics Industry Press) (in Chinese) [廖复疆 1999 真空电子学 (北京: 电子工业出版社)]

    [12]

    Liu Y W, Tian H 2008 Sci. China E 38 1515 (in Chinese) [刘燕文, 田宏 2008 中国科学E 38 1515]

    [13]

    Wang J S, Liu W 2009 IEEE Trans. on ED 56 799

    [14]

    Liu Y W, HanY, Zhao L 2009 Acta. Electr. Sin. 316 1757 (in Chinese) [刘燕文, 韩勇, 赵丽2009 电子学报 316 1757]

    [15]

    Wang X X, Liu Y W 2014 IEEE-Trans. on ED. 61 605

    [16]

    Liu Y W, Wang X X, Tian H 2015 Sci. China Infor. Sci. 45 145 (in Chinese) [刘燕文, 王小霞, 田宏 2015 中国科学 信息科学 45 145]

    [17]

    Liu Y W, Tian H, Han Y 2009 Acta. Phys. Sin. 58 535 (in Chinese) [刘燕文, 田宏, 韩勇 2009 58 535]

    [18]

    Li J, Yu Z Q, Shao W S, Zhang K 2005 Appl. Surf. Sci. 25 151

    [19]

    Wang X X, Liao X H, Luo J R 2008 Acta. Phys. Sin. 57 1924 (in Chinese) [王小霞, 廖显恒, 罗积润 2008 57 1924]

    [20]

    Li X P, Sun S P, Yu Y, et. al. 2015 Chin. Phys. B 24 120502

    [21]

    Liu Y W, Tian H 2008 Sci. China E 51 1497

    [22]

    Zhang M C, Liu Y W, Yu S J 2014 IEEE-Trans. on ED 61 2983

    [23]

    Liu Y W 2006 Vacuum Sci. Tech. 26 240 (in Chinese) [刘燕文 2006 真空科学与技术学报 26 240]

    [24]

    Electronics Industry Technology Pyrometer (Beijing: Nat. defense Industry press) (in Chinese) [电子工业技术手册(4) 1990 (北京: 国防工业出版社)]

    [25]

    Gren M C, Skinner H B and Tuck H A 1981 Appl. Surf. Sci. 8 13

    [26]

    Guo W X 1984 J Electr. Infor.Tech. 6 166 (in Chinese) [郭文湘 1984 电子科学学刊 6 166]

    [27]

    Gotoh T, Hirasawa S and Kinosita K 1982 Thin Solid Film 87 385

    [28]

    Dudley K 1961 Vacuum 1 154

    [29]

    Verhoeven A T and Vandoveren H 1981 Appl. Surf. Sci. 8 95

    [30]

    Wooren L A, Ruehie A E 1955 J. Appl. Phys. 26 44

    [31]

    Mooke G E 1950 Phys. Rev. 77 246

    [32]

    Leverton W F, Sepherd W G 1952 J. Appl. Phys. 23 787

    [33]

    Zhan M Q, Zhang D P, He H B 2004 Chin. J. Lasers 11 1356 (in Chinese) [占美琼, 张东平,贺洪波 2004 中国激光 11 1356]

    [34]

    Liu Y W, Zhang H L 2004 International Vacuum Electronics Conference 214

    [35]

    Cheng Y J, Li D T, Zhang D X 2010 J. Vac. Sci. Technol. 30 54 (in Chinese) [成永军, 李得天, 张涤新 2010 真空科学与技术学报 30 54]

  • [1] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] Wang Hao, Xu Jin-Liang. Interaction and motion of two neighboring Leidenfrost droplets on oil surface. Acta Physica Sinica, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [3] Liang Wei-Chen, Wang Yu-Han, Zhang Xi, Wang Fei, Jia Feng-Dong, Xue Ping, Zhong Zhi-Ping. Analysis and simulation of time-of-flight spectrum in Rb+-Rb hybrid trap. Acta Physica Sinica, 2023, 72(9): 093401. doi: 10.7498/aps.72.20222273
    [4] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [5] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [6] Shen Huan, Hu Chun-Long, Deng Xu-Lan. Excited-state dynamics of m-dichlorobezene in ultrashort laser pulses. Acta Physica Sinica, 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [7] Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp. Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [8] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [9] Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [10] Zhang Wen-Bin, Liao Long-Guang, Yu Tong-Xu, Ji Ai-Ling. Ring deposition of drying suspension droplets. Acta Physica Sinica, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [11] Yuan Jin-Peng, Ji Zhong-Hua, Yang Yan, Zhang Hong-Shan, Zhao Yan-Ting, Ma Jie, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation on ionized ultracold molecules formed in a magneto-optical trap by time-of-flight mass spectroscopy. Acta Physica Sinica, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [12] Wang Yan, Yao Zhi, Feng Chun-Lei, Liu Jia-Hong, Ding Hong-Bin. 355 nm laser photoionization of formaldehyde time-of-flight mass spectroscopic study. Acta Physica Sinica, 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [13] Wang Zhen-Xia, Zhu Jian-Kang, Ren Cui-Lan, Zhang Wei. Systhesis of C59N and C19N crystals. Acta Physica Sinica, 2009, 58(7): 5046-5050. doi: 10.7498/aps.58.5046
    [14] Liu Yan-Wen, Tian Hong, Han Yong, Zhu Hong, Li Yu-Tao, Xu Zhen-Ying, Meng Ming-Feng, Yi Hong-Xia, Lu Yu-Xin, Zhang Hong-Lai, Liu Pu-Kun. Emission properties of impregnated cathode with nanoparticle films. Acta Physica Sinica, 2009, 58(12): 8635-8642. doi: 10.7498/aps.58.8635
    [15] Yao Guan-Xin, Wang Xiao-Li, Du Chuan-Mei, Li Hui-Min, Zhang Xian-Yi, Zheng Xian-Feng, Ji Xue-Han, Cui Zhi-Feng. An experimental investigation on the resonance enhanced multiphoton ionization and dissociation processes of acetone. Acta Physica Sinica, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [16] Hao Bao-Liang, Liu Pu-Kun, Tang Chang-Jian. The two-dimensional metal photonic band gap structure consisting of a skew lattice in a nonorthogonal coordinate system. Acta Physica Sinica, 2006, 55(4): 1862-1867. doi: 10.7498/aps.55.1862
    [17] Luo Xiao-Lin, Kong Xiang-Lei, Niu Dong-Mei, Qu Hong-Bo, Li Hai-Yang. Cluster-enhanced generation of multicharged xenon ions in nanosecond laser ionization of xenon beam. Acta Physica Sinica, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [18] Xia Zhu-Hong, Fang Li, Zheng Hai-Yang, Hu Rui, Zhang Yu-Ying, Kong Xiang-He, Gu Xue-Jun, Zhu Yuan, Zhang Wei-Jun, Bao Jian, Xiong Lu-Yuan. Real-time measurement of the aerodynamic size of individual aerosol particles. Acta Physica Sinica, 2004, 53(1): 320-324. doi: 10.7498/aps.53.320
    [19] Zhang Ke-Yan. Phase transition speed research of metal material at laser irradiation medium strength. Acta Physica Sinica, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [20] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
Metrics
  • Abstract views:  6598
  • PDF Downloads:  179
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2015
  • Accepted Date:  22 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回
Baidu
map