Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Miniaturized optical vortex mode demultiplexer: Principle, fabrication, and applications

Yang Xin-Yu Ye Hua-Peng Li Pei-Yun Liao He-Lin Yuan Dong Zhou Guo-Fu

Citation:

Miniaturized optical vortex mode demultiplexer: Principle, fabrication, and applications

Yang Xin-Yu, Ye Hua-Peng, Li Pei-Yun, Liao He-Lin, Yuan Dong, Zhou Guo-Fu
PDF
HTML
Get Citation
  • Vortex beams have attracted extensive attention in recent decade due to the carried optical orbital angular momentum (OAM). Vortex beams carrying different OAM modes are orthogonal to each other, and thus have become highly promising in realizing high-capacity optical communication systems. This review is to introduce the fundamental principles of optical OAM mode demultiplexing, recent advances in the fabrication techniques and emerging applications in high-capacity optical communications. First, this review introduces the development history of the working principle of OAM mode demultiplexer. Subsequently, a variety of preparation techniques and emerging applications of OAM mode demultiplexing are discussed in detail. Finally, we provide an in-depth analysis and outlook for the future trends and prospects of the OAM mode demultiplexer.
      Corresponding author: Ye Hua-Peng, yehp@m.scnu.edu.cn ; Yuan Dong, yuandong@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61805087), the Special Program on Key Fields for Colleges and Universities of Guangdong Province, China (Grant No. 2021ZDZX1048), the Key Laboratory of Optical Information Materials and Technology Guangdong Province, China (Grant No. 2017B030301007), and the National Green Optoelectronics International Joint Research Center (Grant No. 2016B01018).
    [1]

    Webb W, Hanzo L 1994 Modern Quadrature Amplitude Modulation: Principles and Applications for Wireless Communications (Hoboken: Wiley-IEEE Press

    [2]

    Mukherjee B 2006 Optical WDM Networks (New York: Springer

    [3]

    Hanzo L, Ng S X, Keller T, Webb W 2004 Quadrature Amplitude Modulation (Hoboken: Wiley-IEEE Press

    [4]

    Rubinsztein-Dunlop H, Forbes A, Berry M V 2017 J. Opt. 19 013001Google Scholar

    [5]

    Forbes A, De Oliveira M, Dennis M R 2021 Nat. Photon. 15 253Google Scholar

    [6]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [7]

    Van Enk S J, Nienhuis G 1992 Opt. Commun. 94 147Google Scholar

    [8]

    Beijersbergen M W, Allen L, Van Der Veen H E L O, Woerdman J P 1993 Opt. Commun. 96 123Google Scholar

    [9]

    Molina-Terriza G, Torres J P, Torner L 2007 Nat. Phys. 3 305Google Scholar

    [10]

    Padgett M J 2017 Opt. Express 25 11265Google Scholar

    [11]

    Tkachenko G, Chen M Z, Dholakia K, Mazilu M 2017 Optica 4 330Google Scholar

    [12]

    Zhang Y, Shi W, Shen Z, Man Z, Min C, Shen J, Zhu S, Urbach H P, Yuan X 2015 Sci. Rep. 5 15446Google Scholar

    [13]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [14]

    Xie G, Song H, Zhao Z, Milione G, Ren Y, Liu C, Zhang R, Bao C, Li L, Wang Z, Pang K, Starodubov D, Lynn B, Tur M, Willner A E 2017 Opt. Lett. 42 4482Google Scholar

    [15]

    Qiu C W, Yang Y 2017 Science 357 645Google Scholar

    [16]

    Swartzlander J G A, Ford E L, Abdul-Malik R S, Close L M, Peters M A, Palacios D M, Wilson D W 2008 Opt. Express 16 10200Google Scholar

    [17]

    Tamburini F, Thide B, Molina-Terriza G, Anzolin G 2011 Nat. Phys. 7 195Google Scholar

    [18]

    Fang X, Ren H, Gu M 2019 Nat. Photonics 14 102Google Scholar

    [19]

    Erhard M, Fickler R, Krenn M, Zeilinger A 2018 Light Sci. Appl. 7 17146Google Scholar

    [20]

    Wang J 2016 Photon. Res. 4 B14Google Scholar

    [21]

    Jia P, Yang Y, Min C J, Fang H, Yuan X C 2013 Opt. Lett. 38 588Google Scholar

    [22]

    Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257Google Scholar

    [23]

    Ren Y, Li L, Wang Z, Kamali S M, Arbabi E, Arbabi A, Zhao Z, Xie G, Cao Y, Ahmed N, Yan Y, Liu C, Willner A J, Ashrafi S, Tur M, Faraon A, Willner A E 2016 Sci. Rep. 6 33306Google Scholar

    [24]

    Padgett M, Courtial J, Allen L 2004 Phys. Today 57 35Google Scholar

    [25]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [26]

    Carpentier A V, Michinel H, Salgueiro J R, Olivieri D 2008 Am. J. Phys. 76 916Google Scholar

    [27]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [28]

    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O'Brien J L, Thompson M G, Yu S 2012 Science 338 363Google Scholar

    [29]

    Kumar A, Vaity P, Krishna Y, Singh R P 2010 Opt. Laser Eng. 48 276Google Scholar

    [30]

    Bouchal Z, Haderka O, Celechovsky R 2005 New J. Phys. 7 125Google Scholar

    [31]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J. Opt. 13 064001Google Scholar

    [32]

    Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [33]

    Anhauser A, Wunenburger R, Brasselet E 2012 Phys. Rev. Lett. 109 034301Google Scholar

    [34]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [35]

    Li H, Ren G, Zhu B, Gao Y, Yin B, Wang J, Jian S 2017 Opt. Lett. 42 179Google Scholar

    [36]

    Verbeeck J, Tian H, Schattschneider P 2010 Nature 467 301Google Scholar

    [37]

    Liu C M, Liu J S, Niu L T, Wei X L, Wang K J, and Yang Z G 2017 Sci. Rep. 7 3891Google Scholar

    [38]

    Liu Y X, Sun S H, Pu J X, Lu B D 2013 Opt. Laser Technol. 45 473Google Scholar

    [39]

    Ambuj A, Vyas R, Singh S 2014 Opt. Lett. 39 5475Google Scholar

    [40]

    Tao H, Liu Y, Chen Z, Pu J 2012 Appl. Phys. B 106 927Google Scholar

    [41]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar

    [42]

    Ruffato G, Massari M, Romanato F 2016 Sci. Rep. 6 24760Google Scholar

    [43]

    Zheng S, Wang J 2017 Sci. Rep. 7 40781Google Scholar

    [44]

    Dai K J, Gao C Q, Zhong L, Na Q X, Wang Q 2015 Opt. Lett. 40 562Google Scholar

    [45]

    Harris M, Hill C A, Tapster P R, Vaughan J M 1994 Phys. Rev. A 49 3119Google Scholar

    [46]

    Martelli P, Boffi P, Fasiello A, Martinelli M 2015 Electron. Lett. 51 278Google Scholar

    [47]

    Hossack W J, Darling A M, Dahdouh A 1987 J. Modern Opt. 34 1235Google Scholar

    [48]

    Ruffato G, Massari M, Parisi G, Romanato F 2017 Opt. Express 25 7859Google Scholar

    [49]

    Yang J S, Liu Z B, Gao S C, Huang X C, Feng Y H, Liu W P, Li Z H 2019 Opt. Express 27 4338Google Scholar

    [50]

    Berkhout G C, Lavery M P, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601Google Scholar

    [51]

    Lavery M P, Robertson D J, Berkhout G C, Love G D, Padgett M J, Courtial J 2012 Opt. Express 20 2110Google Scholar

    [52]

    Ruffato G, Massari M, Romanato F 2017 Opt. Lett. 42 551Google Scholar

    [53]

    Ruffato G, Massari M, M Girardi, G Parisi, Zontini M, and Romanato F 2019 Opt. Express 27 24123Google Scholar

    [54]

    Lightman S, Hurvitz G, Gvishi R, Arie A 2017 Optica 4 605Google Scholar

    [55]

    Wan C H, Chen J, Zhan Q W 2017 APL Photonics 2 031302Google Scholar

    [56]

    Li L, Guo Y C, Zhang Z C, Shang Z J, Li C, Wang J Q, Gao L L, Hai L, Gao C Q, Fu S Y 2023 Adv. Photon. 5 056002Google Scholar

    [57]

    Mirhosseini M, Malik M, Shi Z, Boyd R W 2013 Nat. Commun. 4 2781Google Scholar

    [58]

    Malik M, Mirhosseini M, Lavery M 2014 Nat. Commun. 5 3115Google Scholar

    [59]

    Wen Y H, Chremmos I, Chen Y J, Zhu J B, Zhang Y F, Yu S Y 2018 Phys. Rev. Lett. 120 193904Google Scholar

    [60]

    Fontaine N K, Ryf R, Chen H, Neilson D T, Kim K, Carpenter J 2019 Nat. Commun. 10 1865Google Scholar

    [61]

    Liu Z B, Gao S C, Lai Z Y, Li Y R, Ao Z H, Li J P, Tu J J, Wu Y X, Liu W P, Li Z H 2023 Laser Photonics Rev. 17 2200536Google Scholar

    [62]

    Huang Z, Wang P, Liu J, Xiong W, He Y, Xiao J, Ye H, Li Y, Chen S, Fan D 2021 Phys. Rev. Appl. 15 014037Google Scholar

    [63]

    Brandt F, Hiekkamäki M, Bouchard F, Huber M, Fickler R 2020 Optica 7 98Google Scholar

    [64]

    Labroille G, Denolle B, Jian P, Genevaux P, Treps N, Morizur J F 2014 Opt. Express 22 15599Google Scholar

    [65]

    Schloegel K, Karypis G, Kumar V 2001 IEEE T. Parall. Distr. 12 451Google Scholar

    [66]

    Cao H, Liang Y Z, Wang L L, Ruan Z S, Wang H Y, Zeng J W, Wang J 2023 Laser Photonics Rev. 17 2200631Google Scholar

    [67]

    Shi J S, Wei D, Hu C, Chen M C, Liu K W, Luo J, Zhang X Y 2021 Opt. Express 29 7084Google Scholar

    [68]

    Veli M, Mengu D, Yardimci N T, Luo Y, Li J, Rivenson Y, Jarrahi M, Ozcan A 2021 Nat. Commun. 12 37Google Scholar

    [69]

    Zhou T, Lin X, Wu J, Chen Y, Xie H, Li Y, Fan J, Wu H, Fang L, Dai Q 2021 Nature Photonics 15 367Google Scholar

    [70]

    Yan T, Wu J, Zhou T, Xie H, Xu F, Fan J, Fang L, Lin X, Dai Q 2019 Phys. Rev. Lett. 123 023901Google Scholar

    [71]

    Lin X, Rivenson Y, Yardimci N T, Veli M, Luo Y, Jarrahi M, Ozcan A 2018 Science 361 1004Google Scholar

    [72]

    Doster T, Watnik A T 2017 Appl. Opt. 56 3386Google Scholar

    [73]

    Chen P, Ma L L, Duan W, Chen J, Ge S J, Zhu Z H, Tang M J, Xu R, Gao W, Li T, Hu W, Lu Y Q 2018 Adv. Mater. 30 1705865Google Scholar

    [74]

    Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R 2015 Opt. Lett. 40 4887Google Scholar

    [75]

    Liu S J, Chen P, S. Ge J, Zhu L, Zhang Y H, Lu Y Q 2022 Laser Photonics Rev. 16 2200118Google Scholar

    [76]

    Karimi E, Piccirillo B, Nagali E, Marrucci L, Santamato E 2009 Appl. Phys. Lett. 94 231124Google Scholar

    [77]

    Zhang H, Fu C, Fang J, Lei T, Zhang Y, Yuan X 2020 Appl. Opt. 59 11041Google Scholar

    [78]

    Xie Z, Lei T, Weng X, Du L, Gao S, Yuan Y, Feng S, Zhang Y, Yuan X 2016 IEEE Photonics Technology Letters 28 2799Google Scholar

    [79]

    Min C, Liu J, Lei T, Si G, Xie Z, Lin J, Du L, Yuan X 2016 Laser Photonics Rev. 10 978Google Scholar

    [80]

    Xie Z, Gao S, Lei T, Feng S, Zhang Y, Li F, Zhang J, Li Z, Yuan X 2018 Photon. Res. 6 743Google Scholar

    [81]

    Cheng J, Sha X, Zhang H, Chen Q, Qu G, Song Q, Yu S, Xiao S 2022 Nano. Lett. 22 3993Google Scholar

    [82]

    Li S, Li X, Zhang L, Wang G, Zhang L, Liu M, Zeng C, Wang L, Sun Q, Zhao W, Zhang W 2020 Adv. Optical Mater. 8 1901666Google Scholar

    [83]

    Li Y, Li X, Chen L, Pu M, Jin J, Hong M, Luo X 2017 Adv. Optical Mater. 5 1600502Google Scholar

    [84]

    Zhang S, Huo P, Zhu W, Zhang C, Chen P, Liu M, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2020 Laser & Photonics Reviews 14 2000062Google Scholar

    [85]

    Fu P, Ni P N, Wang Q H, Liu Y F, Wu B, Chen P P, Kan Q, Wang S P, Chen H D, Xu C, Xie Y Y 2021 Adv. Optical Mater. 9 2101308Google Scholar

    [86]

    Chung H, Kim D, Choi E, Lee J 2022 Laser Photonics Rev. 16 2100456Google Scholar

    [87]

    Feng Q, Kong X, Shan M, Lin Y, Li L, Cui T J 2022 Phys. Rev. Appl. 17 034017Google Scholar

    [88]

    Fang J C, Xie Z W, Lei T, Min C J, Du L P, Li Z H, Yuan X C 2018 Acs Photonics 5 3478Google Scholar

    [89]

    Zhao H, Quan B, Wang X, Gu C, Li J, Zhang Y 2017 ACS Photonics 5 1726Google Scholar

    [90]

    Ji Z, Liu W, Krylyuk S, Fan X, Zhang Z, Pan A, Feng L, Davydov A, Agarwal R 2020 Science 368 763Google Scholar

    [91]

    Wang P P, Xiong W J, Huang Z B, He Y L, Liu J M, Ye H P, Xiao J N, Li Y, Fan D Y, Chen S Q 2022 IEEE J. Sel. Top. Quant. 28 7500111Google Scholar

    [92]

    Wang P, Xiong W, Huang Z, He Y, Xie Z, Liu J, Ye H, Li Y, Fan D, Chen S 2021 Photon. Res. 9 2116Google Scholar

    [93]

    Xiong W J, Huang Z B, Wang P P, Wang X R, He Y L, Wang C F, Liu J M, Ye H P, Fan D Y, Chen S Q 2021 Opt. Express 29 36936Google Scholar

    [94]

    Xiong W, Wang P, Cheng M, Liu J, He Y, Zhou X, Xiao J, Li Y, Chen S, Fan D 2020 J. Lightwave Technol. 38 1712Google Scholar

    [95]

    Willner A E, Li L, Xie G, Ren Y, Huang H, Yue Y, Ahmed N, Willner M J, Willner A J, Yan Y, Zhao Z, Wang Z, Liu C, Tur M, Ashrafi S 2016 Photon. Res. 4 B5Google Scholar

    [96]

    Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [97]

    Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [98]

    Wang J, Yang J Y , Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [99]

    Li L, Zhang R, Zhao Z, Xie G, Liao P, Pang K, Song H, Liu C, Ren Y, Labroille G, Jian P, Starodubov D, Lynn B, Bock R, Tur M, Willner A E 2017 Sci. Rep. 7 17427Google Scholar

    [100]

    Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, Villoresi P 2014 Phys. Rev. Lett. 113 060503Google Scholar

    [101]

    Wang A D, Zhu L, Chen S, Du C, Mo Q, Wang J 2016 Opt. Express 24 11716Google Scholar

    [102]

    Zhu L, Liu J, Mo Q, Du C, Wang J 2016 Opt. Express 24 16934Google Scholar

    [103]

    Lavery M P J, Peuntinger C, Gunthner K, Banzer P, Elser D, Boyd R W, Padgett M J, Marquardt C, Leuchs G 2017 Sci. Adv. 3 e1700552Google Scholar

    [104]

    Heng X B, Gan J L, Zhang Z S, Li J, Li M Q, Zhao H, Qian Q, Xu S H, Yang Z M 2018 Opt. Express 26 17429Google Scholar

    [105]

    Liu J, Zhang J, Liu J, Lin Z , Li Z, Lin Z, Zhang J, Huang C, Mo S, Shen L, Lin S, Chen Y, Gao R, Zhang L, Lan X, Cai X, Li Z, Yu S 2022 Light Sci. Appl. 11 202Google Scholar

  • 图 1  基于马赫-曾德干涉仪的OAM分选方案 (a) OAM分类器的第1阶段; (b) OAM分类器的前3个阶段, 每个灰色框代表(a)图所示的干涉仪[41]; (c) 基于柱面透镜干涉的OAM多路复用器/解复用器方案; (d) l = 0时, BER的测量值随OAM模式解复用后接收的光功率的变化规律, 正方形为单个OAM模式, 不受l = 1模式串扰, 三角形为两个OAM模式, 受l = 1 模式串扰[46]

    Figure 1.  The schematic of the OAM sorter based on Mach-Zehnder interferometer: (a) The first stage of the OAM sorter; (b) the first three stages of the OAM sorter, the gray boxes in each stage represent the interferometer shown in Fig. 1(a) [41]; (c) OAM multiplexer/demultiplexer based on interference via cylindrical lens; (d) BER values measured against the received optical power after OAM demultiplexing for mode l = 0, line denoted with triangles represents two OAM modes with crosstalk because of mode l = 1, while line denoted with squares represents single OAM mode without crosstalk[46].

    图 2  利用对数-极坐标转换法实现OAM模式分离的原理 (a) 对数-极坐标转换法实验装置图[50]; (b) 基于对数-极坐标变换的紧凑OAM模式解复用方案[52]; (c) 使用折射光学元件将 OAM 状态转换为横向动量状态的光路示意图[51]

    Figure 2.  The principle of realizing OAM mode separation based on logarithmic-polar coordinate transformation method: (a) The schematic of the experimental setup based on log-polar coordinate transformation method [50]; (b) the scheme of compact OAM mode demultiplexer based on logarithmic-polar coordinate transformation method[52]; (c) the optical path of converting the OAM state into a transverse momentum state using refractive optical elements[51].

    图 3  (a) 模式复制方案分选的光路图[58]; (b) 螺旋极坐标转换原理与对数极坐标转换原理的对比示意图; (c) 螺旋极坐标转换原理的分选光路图[59]

    Figure 3.  (a) The schematic of the experimental setup of the mode sorter based on refractive beam-copying method[58]; (b) comparison between the principle of spiral-polar coordinate transformation method and the principle of the log-polar coordinate transformation method; (c) the diagram of the optical path based on spiral-polar coordinate transformation method[59].

    图 4  (a) 用于HG/LG叠加态分解的多平面光转换器件[60]; (b) 准小波共形映射示意图[66]; (c) 基于光衍射神经网络的宽带、低串扰和大信道OAM模式解复用[60]

    Figure 4.  (a) Multi-plane optical converter for HG/LG superposition state decomposition[60]; (b) the schematic of quasi-wavelet conformal mapping[66]; (c) low crosstalk OAM mode demultiplexer based on optical diffraction neural network[60].

    图 5  (a) 光子的SAM变化转换为OAM的装置示意图[76]; (b) 基于达曼光栅进行OAM(解)复用的自由空间光通信示意图[22]; (c) 使用双光子光刻技术在少模光纤表面上制造涡旋光栅示意图[80]; (d)基于电子束刻蚀法制作的超表面流程图[81]

    Figure 5.  (a) The schematic of SAM-OAM mode converter[76]; (b) the schematic of free-space optical communication based on Dammann grating for OAM (de)multiplexing[22]; (c) the details of fabricating vortex gratings on the surface of few-mode optical fibers using two-photon lithography[80]; (d) flow chart of producing metasurface based on electron beam etching[81].

    图 6  (a) Pancharatnam-Berry光学元件器件的相位分布图[88]; (b) 基于使用单层超表面的太赫兹频段 OAM 复用方案的天线结构示意图[89]; (c) 携带OAM的光束的光电流测量示意图[90]

    Figure 6.  (a) Phase distribution of Pancharatnam-Berry photonic device[88]; (b) the schematic of the nanoantenna of single-layer metasurface for terahertz OAM multiplexing[89]; (c) the schematic of the photocurrent measurement for optical beams carrying OAM[90]

    图 7  (a)载有信息的涡旋光束的复用/解复用以及偏振复用/解复用[98]; (b)埃尔朗根天际线1.6 km远的自由空间扭曲光路径和实验装置图[103]; (c) 用于表征生成的涡旋光束的实验装置[104]; (d) OAM-SDM-WDM数据传输的实验装置[105]; (e) OAM复用光纤通信系统的实验装置, 实验装置包括发射器、OAM(解)复用器和接收器[80]

    Figure 7.  (a) De/multiplexing of OAM beams carrying information and de/multiplexing of polarization [98]; (b) 1.6 km free-space link in the city of Erlangen and the corresponding experimental setup[103]; (c) experimental setup for characterizing the generated OAM beam[104]; (d) experimental setup of OAM-SDM-WDM data transmission[105]; (e) experimental setup of the optical fiber communication system for OAM multiplexing, including a transmitter, an OAM, de/multiplexer and a receiver[80].

    Baidu
  • [1]

    Webb W, Hanzo L 1994 Modern Quadrature Amplitude Modulation: Principles and Applications for Wireless Communications (Hoboken: Wiley-IEEE Press

    [2]

    Mukherjee B 2006 Optical WDM Networks (New York: Springer

    [3]

    Hanzo L, Ng S X, Keller T, Webb W 2004 Quadrature Amplitude Modulation (Hoboken: Wiley-IEEE Press

    [4]

    Rubinsztein-Dunlop H, Forbes A, Berry M V 2017 J. Opt. 19 013001Google Scholar

    [5]

    Forbes A, De Oliveira M, Dennis M R 2021 Nat. Photon. 15 253Google Scholar

    [6]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [7]

    Van Enk S J, Nienhuis G 1992 Opt. Commun. 94 147Google Scholar

    [8]

    Beijersbergen M W, Allen L, Van Der Veen H E L O, Woerdman J P 1993 Opt. Commun. 96 123Google Scholar

    [9]

    Molina-Terriza G, Torres J P, Torner L 2007 Nat. Phys. 3 305Google Scholar

    [10]

    Padgett M J 2017 Opt. Express 25 11265Google Scholar

    [11]

    Tkachenko G, Chen M Z, Dholakia K, Mazilu M 2017 Optica 4 330Google Scholar

    [12]

    Zhang Y, Shi W, Shen Z, Man Z, Min C, Shen J, Zhu S, Urbach H P, Yuan X 2015 Sci. Rep. 5 15446Google Scholar

    [13]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [14]

    Xie G, Song H, Zhao Z, Milione G, Ren Y, Liu C, Zhang R, Bao C, Li L, Wang Z, Pang K, Starodubov D, Lynn B, Tur M, Willner A E 2017 Opt. Lett. 42 4482Google Scholar

    [15]

    Qiu C W, Yang Y 2017 Science 357 645Google Scholar

    [16]

    Swartzlander J G A, Ford E L, Abdul-Malik R S, Close L M, Peters M A, Palacios D M, Wilson D W 2008 Opt. Express 16 10200Google Scholar

    [17]

    Tamburini F, Thide B, Molina-Terriza G, Anzolin G 2011 Nat. Phys. 7 195Google Scholar

    [18]

    Fang X, Ren H, Gu M 2019 Nat. Photonics 14 102Google Scholar

    [19]

    Erhard M, Fickler R, Krenn M, Zeilinger A 2018 Light Sci. Appl. 7 17146Google Scholar

    [20]

    Wang J 2016 Photon. Res. 4 B14Google Scholar

    [21]

    Jia P, Yang Y, Min C J, Fang H, Yuan X C 2013 Opt. Lett. 38 588Google Scholar

    [22]

    Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257Google Scholar

    [23]

    Ren Y, Li L, Wang Z, Kamali S M, Arbabi E, Arbabi A, Zhao Z, Xie G, Cao Y, Ahmed N, Yan Y, Liu C, Willner A J, Ashrafi S, Tur M, Faraon A, Willner A E 2016 Sci. Rep. 6 33306Google Scholar

    [24]

    Padgett M, Courtial J, Allen L 2004 Phys. Today 57 35Google Scholar

    [25]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [26]

    Carpentier A V, Michinel H, Salgueiro J R, Olivieri D 2008 Am. J. Phys. 76 916Google Scholar

    [27]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [28]

    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O'Brien J L, Thompson M G, Yu S 2012 Science 338 363Google Scholar

    [29]

    Kumar A, Vaity P, Krishna Y, Singh R P 2010 Opt. Laser Eng. 48 276Google Scholar

    [30]

    Bouchal Z, Haderka O, Celechovsky R 2005 New J. Phys. 7 125Google Scholar

    [31]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J. Opt. 13 064001Google Scholar

    [32]

    Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [33]

    Anhauser A, Wunenburger R, Brasselet E 2012 Phys. Rev. Lett. 109 034301Google Scholar

    [34]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [35]

    Li H, Ren G, Zhu B, Gao Y, Yin B, Wang J, Jian S 2017 Opt. Lett. 42 179Google Scholar

    [36]

    Verbeeck J, Tian H, Schattschneider P 2010 Nature 467 301Google Scholar

    [37]

    Liu C M, Liu J S, Niu L T, Wei X L, Wang K J, and Yang Z G 2017 Sci. Rep. 7 3891Google Scholar

    [38]

    Liu Y X, Sun S H, Pu J X, Lu B D 2013 Opt. Laser Technol. 45 473Google Scholar

    [39]

    Ambuj A, Vyas R, Singh S 2014 Opt. Lett. 39 5475Google Scholar

    [40]

    Tao H, Liu Y, Chen Z, Pu J 2012 Appl. Phys. B 106 927Google Scholar

    [41]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar

    [42]

    Ruffato G, Massari M, Romanato F 2016 Sci. Rep. 6 24760Google Scholar

    [43]

    Zheng S, Wang J 2017 Sci. Rep. 7 40781Google Scholar

    [44]

    Dai K J, Gao C Q, Zhong L, Na Q X, Wang Q 2015 Opt. Lett. 40 562Google Scholar

    [45]

    Harris M, Hill C A, Tapster P R, Vaughan J M 1994 Phys. Rev. A 49 3119Google Scholar

    [46]

    Martelli P, Boffi P, Fasiello A, Martinelli M 2015 Electron. Lett. 51 278Google Scholar

    [47]

    Hossack W J, Darling A M, Dahdouh A 1987 J. Modern Opt. 34 1235Google Scholar

    [48]

    Ruffato G, Massari M, Parisi G, Romanato F 2017 Opt. Express 25 7859Google Scholar

    [49]

    Yang J S, Liu Z B, Gao S C, Huang X C, Feng Y H, Liu W P, Li Z H 2019 Opt. Express 27 4338Google Scholar

    [50]

    Berkhout G C, Lavery M P, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601Google Scholar

    [51]

    Lavery M P, Robertson D J, Berkhout G C, Love G D, Padgett M J, Courtial J 2012 Opt. Express 20 2110Google Scholar

    [52]

    Ruffato G, Massari M, Romanato F 2017 Opt. Lett. 42 551Google Scholar

    [53]

    Ruffato G, Massari M, M Girardi, G Parisi, Zontini M, and Romanato F 2019 Opt. Express 27 24123Google Scholar

    [54]

    Lightman S, Hurvitz G, Gvishi R, Arie A 2017 Optica 4 605Google Scholar

    [55]

    Wan C H, Chen J, Zhan Q W 2017 APL Photonics 2 031302Google Scholar

    [56]

    Li L, Guo Y C, Zhang Z C, Shang Z J, Li C, Wang J Q, Gao L L, Hai L, Gao C Q, Fu S Y 2023 Adv. Photon. 5 056002Google Scholar

    [57]

    Mirhosseini M, Malik M, Shi Z, Boyd R W 2013 Nat. Commun. 4 2781Google Scholar

    [58]

    Malik M, Mirhosseini M, Lavery M 2014 Nat. Commun. 5 3115Google Scholar

    [59]

    Wen Y H, Chremmos I, Chen Y J, Zhu J B, Zhang Y F, Yu S Y 2018 Phys. Rev. Lett. 120 193904Google Scholar

    [60]

    Fontaine N K, Ryf R, Chen H, Neilson D T, Kim K, Carpenter J 2019 Nat. Commun. 10 1865Google Scholar

    [61]

    Liu Z B, Gao S C, Lai Z Y, Li Y R, Ao Z H, Li J P, Tu J J, Wu Y X, Liu W P, Li Z H 2023 Laser Photonics Rev. 17 2200536Google Scholar

    [62]

    Huang Z, Wang P, Liu J, Xiong W, He Y, Xiao J, Ye H, Li Y, Chen S, Fan D 2021 Phys. Rev. Appl. 15 014037Google Scholar

    [63]

    Brandt F, Hiekkamäki M, Bouchard F, Huber M, Fickler R 2020 Optica 7 98Google Scholar

    [64]

    Labroille G, Denolle B, Jian P, Genevaux P, Treps N, Morizur J F 2014 Opt. Express 22 15599Google Scholar

    [65]

    Schloegel K, Karypis G, Kumar V 2001 IEEE T. Parall. Distr. 12 451Google Scholar

    [66]

    Cao H, Liang Y Z, Wang L L, Ruan Z S, Wang H Y, Zeng J W, Wang J 2023 Laser Photonics Rev. 17 2200631Google Scholar

    [67]

    Shi J S, Wei D, Hu C, Chen M C, Liu K W, Luo J, Zhang X Y 2021 Opt. Express 29 7084Google Scholar

    [68]

    Veli M, Mengu D, Yardimci N T, Luo Y, Li J, Rivenson Y, Jarrahi M, Ozcan A 2021 Nat. Commun. 12 37Google Scholar

    [69]

    Zhou T, Lin X, Wu J, Chen Y, Xie H, Li Y, Fan J, Wu H, Fang L, Dai Q 2021 Nature Photonics 15 367Google Scholar

    [70]

    Yan T, Wu J, Zhou T, Xie H, Xu F, Fan J, Fang L, Lin X, Dai Q 2019 Phys. Rev. Lett. 123 023901Google Scholar

    [71]

    Lin X, Rivenson Y, Yardimci N T, Veli M, Luo Y, Jarrahi M, Ozcan A 2018 Science 361 1004Google Scholar

    [72]

    Doster T, Watnik A T 2017 Appl. Opt. 56 3386Google Scholar

    [73]

    Chen P, Ma L L, Duan W, Chen J, Ge S J, Zhu Z H, Tang M J, Xu R, Gao W, Li T, Hu W, Lu Y Q 2018 Adv. Mater. 30 1705865Google Scholar

    [74]

    Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R 2015 Opt. Lett. 40 4887Google Scholar

    [75]

    Liu S J, Chen P, S. Ge J, Zhu L, Zhang Y H, Lu Y Q 2022 Laser Photonics Rev. 16 2200118Google Scholar

    [76]

    Karimi E, Piccirillo B, Nagali E, Marrucci L, Santamato E 2009 Appl. Phys. Lett. 94 231124Google Scholar

    [77]

    Zhang H, Fu C, Fang J, Lei T, Zhang Y, Yuan X 2020 Appl. Opt. 59 11041Google Scholar

    [78]

    Xie Z, Lei T, Weng X, Du L, Gao S, Yuan Y, Feng S, Zhang Y, Yuan X 2016 IEEE Photonics Technology Letters 28 2799Google Scholar

    [79]

    Min C, Liu J, Lei T, Si G, Xie Z, Lin J, Du L, Yuan X 2016 Laser Photonics Rev. 10 978Google Scholar

    [80]

    Xie Z, Gao S, Lei T, Feng S, Zhang Y, Li F, Zhang J, Li Z, Yuan X 2018 Photon. Res. 6 743Google Scholar

    [81]

    Cheng J, Sha X, Zhang H, Chen Q, Qu G, Song Q, Yu S, Xiao S 2022 Nano. Lett. 22 3993Google Scholar

    [82]

    Li S, Li X, Zhang L, Wang G, Zhang L, Liu M, Zeng C, Wang L, Sun Q, Zhao W, Zhang W 2020 Adv. Optical Mater. 8 1901666Google Scholar

    [83]

    Li Y, Li X, Chen L, Pu M, Jin J, Hong M, Luo X 2017 Adv. Optical Mater. 5 1600502Google Scholar

    [84]

    Zhang S, Huo P, Zhu W, Zhang C, Chen P, Liu M, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2020 Laser & Photonics Reviews 14 2000062Google Scholar

    [85]

    Fu P, Ni P N, Wang Q H, Liu Y F, Wu B, Chen P P, Kan Q, Wang S P, Chen H D, Xu C, Xie Y Y 2021 Adv. Optical Mater. 9 2101308Google Scholar

    [86]

    Chung H, Kim D, Choi E, Lee J 2022 Laser Photonics Rev. 16 2100456Google Scholar

    [87]

    Feng Q, Kong X, Shan M, Lin Y, Li L, Cui T J 2022 Phys. Rev. Appl. 17 034017Google Scholar

    [88]

    Fang J C, Xie Z W, Lei T, Min C J, Du L P, Li Z H, Yuan X C 2018 Acs Photonics 5 3478Google Scholar

    [89]

    Zhao H, Quan B, Wang X, Gu C, Li J, Zhang Y 2017 ACS Photonics 5 1726Google Scholar

    [90]

    Ji Z, Liu W, Krylyuk S, Fan X, Zhang Z, Pan A, Feng L, Davydov A, Agarwal R 2020 Science 368 763Google Scholar

    [91]

    Wang P P, Xiong W J, Huang Z B, He Y L, Liu J M, Ye H P, Xiao J N, Li Y, Fan D Y, Chen S Q 2022 IEEE J. Sel. Top. Quant. 28 7500111Google Scholar

    [92]

    Wang P, Xiong W, Huang Z, He Y, Xie Z, Liu J, Ye H, Li Y, Fan D, Chen S 2021 Photon. Res. 9 2116Google Scholar

    [93]

    Xiong W J, Huang Z B, Wang P P, Wang X R, He Y L, Wang C F, Liu J M, Ye H P, Fan D Y, Chen S Q 2021 Opt. Express 29 36936Google Scholar

    [94]

    Xiong W, Wang P, Cheng M, Liu J, He Y, Zhou X, Xiao J, Li Y, Chen S, Fan D 2020 J. Lightwave Technol. 38 1712Google Scholar

    [95]

    Willner A E, Li L, Xie G, Ren Y, Huang H, Yue Y, Ahmed N, Willner M J, Willner A J, Yan Y, Zhao Z, Wang Z, Liu C, Tur M, Ashrafi S 2016 Photon. Res. 4 B5Google Scholar

    [96]

    Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [97]

    Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [98]

    Wang J, Yang J Y , Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [99]

    Li L, Zhang R, Zhao Z, Xie G, Liao P, Pang K, Song H, Liu C, Ren Y, Labroille G, Jian P, Starodubov D, Lynn B, Bock R, Tur M, Willner A E 2017 Sci. Rep. 7 17427Google Scholar

    [100]

    Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, Villoresi P 2014 Phys. Rev. Lett. 113 060503Google Scholar

    [101]

    Wang A D, Zhu L, Chen S, Du C, Mo Q, Wang J 2016 Opt. Express 24 11716Google Scholar

    [102]

    Zhu L, Liu J, Mo Q, Du C, Wang J 2016 Opt. Express 24 16934Google Scholar

    [103]

    Lavery M P J, Peuntinger C, Gunthner K, Banzer P, Elser D, Boyd R W, Padgett M J, Marquardt C, Leuchs G 2017 Sci. Adv. 3 e1700552Google Scholar

    [104]

    Heng X B, Gan J L, Zhang Z S, Li J, Li M Q, Zhao H, Qian Q, Xu S H, Yang Z M 2018 Opt. Express 26 17429Google Scholar

    [105]

    Liu J, Zhang J, Liu J, Lin Z , Li Z, Lin Z, Zhang J, Huang C, Mo S, Shen L, Lin S, Chen Y, Gao R, Zhang L, Lan X, Cai X, Li Z, Yu S 2022 Light Sci. Appl. 11 202Google Scholar

  • [1] Zhang Zhuo, Zhang Jing-Feng, Kong Ling-Jun. Orbital angular momentum splitter of light based on beam displacer. Acta Physica Sinica, 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [2] Xu Meng-Min, Li Xiao-Qing, Tang Rong, Ji Xiao-Ling. Influence of wind-dominated thermal blooming on orbital angular momentum and phase singularity of dual-mode vortex beams. Acta Physica Sinica, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [3] Zhao Li-Juan, Jiang Huan-Qiu, Xu Zhi-Niu. Helically twisted double-cladding-three-core photonic crystal fiber for generation of orbital angular momentum. Acta Physica Sinica, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [4] Zhao Li-Juan, Zhao Hai-Ying, Xu Zhi-Niu. Design of photonic crystal fiber amplifier based on stimulated Brillouin amplification for orbital angular momentum. Acta Physica Sinica, 2022, 71(7): 074206. doi: 10.7498/aps.71.20211909
    [5] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] Jiang Ji-Heng, Yu Shi-Xing, Kou Na, Ding Zhao, Zhang Zheng-Ping. Beam steering of orbital angular momentum vortex wave based on planar phased array. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian. Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber. Acta Physica Sinica, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [9] Wei Wei, Zhang Zhi-Ming, Tang Li-Qin, Ding Lei, Fan Wan-De, Li Yi-Gang. Transmission characteristics of vortex beams in a sixfold photonic quasi-crystal fiber. Acta Physica Sinica, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [10] Fu Shi-Yao, Gao Chun-Qing. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [11] Zhang Ling-Xiang, Wei Wei, Zhang Zhi-Ming, Liao Wen-Ying, Yang Zhen-Guo, Fan Wan-De, Li Yi-Gang. Propagation properties of vortex beams in a ring photonic crystal fiber. Acta Physica Sinica, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [12] Fan Rong-Hua, Guo Bang-Hong, Guo Jian-Jun, Zhang Cheng-Xian, Zhang Wen-Jie, Du Ge. Entangled W state of multi degree of freedom system based on orbital angular momentum. Acta Physica Sinica, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [13] Fu Dong-Zhi, Jia Jun-Liang, Zhou Ying-Nan, Chen Dong-Xu, Gao Hong, Li Fu-Li, Zhang Pei. Realisation of orbital angular momentum sorter of photons based on sagnac interferometer. Acta Physica Sinica, 2015, 64(13): 130704. doi: 10.7498/aps.64.130704
    [14] Ke Xi-Zheng, Chen Juan, Yang Yi-Ming. Study on orbital angular momentum of Laguerre-Gaussian beam in a slant-path atmospheric turbulence. Acta Physica Sinica, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [15] Li Tie, Chen Juan, Ke Xi-Zheng. Study of orbital angular momentum entangled photons entanglement in atmospheric channel. Acta Physica Sinica, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [16] Chen Xiao-Yi, Li Hai-Xia, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu, Liu Man. Measurement of orbital angular momentum of Laguerre-Gaussian beam by using phase vortices of interference fields. Acta Physica Sinica, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] Ke Xi-Zheng, Nu Ning, Yang Qin-Ling. Research of transmission characteristics of single-photon orbital angular momentum. Acta Physica Sinica, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [18] Lü Hong, Ke Xi-Zheng. Scattering of a beam with orbital angular momentum by a single sphere. Acta Physica Sinica, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [19] Su Zhi-Kun, Wang Fa-Qiang, Lu Yi-Qun, Jin Rui-Bo, Liang Rui-Sheng, Liu Song-Hao. Study on quantum cryptography using orbital angular momentum states of photons. Acta Physica Sinica, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [20] Gao Ming-Wei, Gao Chun-Qing, Lin Zhi-Feng. Generation of twisted stigmatic beam and transfer of orbital angular momentum during the beam transformation. Acta Physica Sinica, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
Metrics
  • Abstract views:  3696
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  19 September 2023
  • Accepted Date:  07 October 2023
  • Available Online:  12 October 2023
  • Published Online:  20 October 2023

/

返回文章
返回
Baidu
map