Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-equilibrium quantum many-body physics with ultracold atoms

Zhai Hui

Citation:

Non-equilibrium quantum many-body physics with ultracold atoms

Zhai Hui
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Combining quantum many-body physics and nonequilibrium physics is an important opportunity and challenge for current physics research. Nonequilibrium quantum many-body physics is not only a subject of common interest to many branches of physics but also an indispensable theoretical foundation for developing emergent quantum technologies. Cold atom system provides an ideal platform for studying nonequilibrium quantum many-body physics. The advantages of cold atom system, as well as other synthetic quantum systems, are reflected in studying various nonequilibrium processes such as the thermalization of isolated system, dissipation induced by coupling to the environment, ramping, quench, or periodically driving physical parameters of a system. In this work, three examples from our research are discussed to show how the study of nonequilibrium quantum many-body physics with cold atoms can help us go beyond the existing framework of topological physics, uncover new methods of detecting quantum many-body correlations, and enrich the physical content of gauge theory. Such a research concerns the fundamental properties of quantum many-body system, such as topology and correlation, utilizes the advantages of cold atomic system to achieve a quantitative comparison between theory and experiment, and aims at discovering universal physical rules for nonequilibrium quantum many-body process, which can be extended to condensed matter and nuclear matter systems.
      Corresponding author: Zhai Hui, hzhai@mail.tsinghua.edu.cn
    [1]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001Google Scholar

    [2]

    Altman E 2018 Nat. Phys. 14 979Google Scholar

    [3]

    Serbyn M, Abanin D A, Papić Z 2021 Nat. Phys. 17 675Google Scholar

    [4]

    Yao N, Nayak C 2018 Phys. Today 71 40Google Scholar

    [5]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [6]

    Zheng W, Zhai H 2014 Phys. Rev. A 89 061603(RGoogle Scholar

    [7]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [8]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett 118 185701Google Scholar

    [9]

    Tarnowshi M, Unal F N, Flaschner N, Rem B S, Eckardt A, Sengstock K, Weitenberg C 2019 Nat. Commun. 10 1728Google Scholar

    [10]

    Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767Google Scholar

    [11]

    Zhao Y J, Tian Y, Ye J L, Wu Y, Zhao Z H, Chi Z H, Tian T, Yao H P, Hu J Z, Chen Y, Chen W L 2023 arXiv: 2309.10257v1 [cond-mat. quant-gas

    [12]

    Liang L, Zheng W, Yao R, Zheng Q, Yao Z, Zhou T G, Huang Q, Zhang Z, Ye J, Zhou X, Chen X, Chen W L, Zhai H, J. Hu J Z 2022 Sci. Bull. 67 2550Google Scholar

    [13]

    Bernein H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletic V, Lukin M D 2017 Nature 551 579Google Scholar

    [14]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [15]

    Cheng Y, Liu S, Zheng W, Zhang P, Zhai H 2022 PRX Quantum 3 040317Google Scholar

    [16]

    Yao Z Y, Pan L, Liu S, Zhai H 2022 Phys. Rev. B 105 125123Google Scholar

    [17]

    Wang H Y, Zhang W Y, Yao Z, Liu Y, Zhu Z H, Zheng Y G, Wang X K, Zhai H, Yuan Z S, Pan J W 2023 Phys. Rev. Lett. 131 050401Google Scholar

  • 图 1  两种不同拓扑的可观测量的轨迹, “缠绕数”分别是0 (a)和1(b), 分别对应平庸和非平庸的哈密顿量拓扑[8]; (c) 汉堡大学实验测量的动力学轨迹, 以及对应的拓扑数和相应的平衡态能带[9]

    Figure 1.  Trajectories of a physics observable during unitary evolution under two topologically difference Hamiltonians, the linking numbers are zero (a) or one (b), corresponding to topologically trivial and nontrivial Hamiltonians, respectively[8]; (c) the dynamical trajectories measured by the Hamburg University group, and the corresponding topological number and equilibrium band structure of the Hamiltonian[9].

    图 2  (a) 理论预言在一维玻色气体中, 加入耗散以后, 粒子数的损失随着时间增长, 服从亚指数函数的形式, 插图是亚指数函数的指数随着相互作用的变化, 可以体现系统的“反常维度”[10]; (b) 清华实验组测量的一维玻色气体中, 加入耗散以后粒子数的减少, 满足亚指数函数形式. 不同曲线是不同的相互作用参数, 其给出的拟合指数是不一样的, 可以从中测得系统的“反常维度”及其随相互作用的强度的变化[11]

    Figure 2.  (a) Theoretical predication for one-dimensional Bose gas, the decay of particle number obeys a stretched exponential behavior when adding dissipation. The inset shows how the exponent of the stretched exponential function changes as the interaction parameter varies, revealing the anomalous dimension of the system[10]. (b) The experimental results from the Tsinghua University group, the observed atom number obeys a stretched exponential form. Different curves correspond to different interaction parameters and the fitting yields different exponents, from which one can measure how the anomalous dimension changes as the interaction parameter varies [11].

    图 3  (a) 理论预言在一维U(1)格点规范模型中, 可观测量对热化的偏离和系统中物质场质量m之间的关系, 只有在m = 0.655附近的相变点, 才出现完全的热化[16]; (b) 实验结合有限尺度变换得到的平衡态相变点的位置[17]; (c)实验测量动力学过程中长时间物理量的值(数据点), 和预期的热化值(实线)的比较[17]; (b)和(c)的对比验证了完全热化只在相变点附近发生

    Figure 3.  (a) Theoretical prediction for one-dimensional U(1) lattice gauge theory, the deviation from thermalization and the mass of matter field are related, the system fully thermalizes only around m=0.655 at the phase transition point[16]; (b) experimental determination of the phase transition point with the help of finite size scaling[17]; (c) experimental measurement of long time saturation value (data points) of the physical observable, compared with the expected thermalization value (solid line) [17]; the comparison between (b) and (c) show full thermalization takes place only around the quantum critical point.

    Baidu
  • [1]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001Google Scholar

    [2]

    Altman E 2018 Nat. Phys. 14 979Google Scholar

    [3]

    Serbyn M, Abanin D A, Papić Z 2021 Nat. Phys. 17 675Google Scholar

    [4]

    Yao N, Nayak C 2018 Phys. Today 71 40Google Scholar

    [5]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [6]

    Zheng W, Zhai H 2014 Phys. Rev. A 89 061603(RGoogle Scholar

    [7]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [8]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett 118 185701Google Scholar

    [9]

    Tarnowshi M, Unal F N, Flaschner N, Rem B S, Eckardt A, Sengstock K, Weitenberg C 2019 Nat. Commun. 10 1728Google Scholar

    [10]

    Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767Google Scholar

    [11]

    Zhao Y J, Tian Y, Ye J L, Wu Y, Zhao Z H, Chi Z H, Tian T, Yao H P, Hu J Z, Chen Y, Chen W L 2023 arXiv: 2309.10257v1 [cond-mat. quant-gas

    [12]

    Liang L, Zheng W, Yao R, Zheng Q, Yao Z, Zhou T G, Huang Q, Zhang Z, Ye J, Zhou X, Chen X, Chen W L, Zhai H, J. Hu J Z 2022 Sci. Bull. 67 2550Google Scholar

    [13]

    Bernein H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletic V, Lukin M D 2017 Nature 551 579Google Scholar

    [14]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [15]

    Cheng Y, Liu S, Zheng W, Zhang P, Zhai H 2022 PRX Quantum 3 040317Google Scholar

    [16]

    Yao Z Y, Pan L, Liu S, Zhai H 2022 Phys. Rev. B 105 125123Google Scholar

    [17]

    Wang H Y, Zhang W Y, Yao Z, Liu Y, Zhu Z H, Zheng Y G, Wang X K, Zhai H, Yuan Z S, Pan J W 2023 Phys. Rev. Lett. 131 050401Google Scholar

  • [1] ZHAI Chenjie, WANG Jing, ZHOU Junjie, WANG Yu, TANG Xiaoming, ZHOU Yin, ZHANG Can, LI Rui, SHU Qing, WANG Kainan, WANG Shuangquan, JIN Zixin, HUA Shan, SUN Yiren, WANG Zhenghao, MA Zhixiang, CAI Minghao, WANG Xiaolong, WU Bin, LIN Qiang. Airborne absolute gravity measurements based on quantum gravimeter. Acta Physica Sinica, 2025, 74(7): . doi: 10.7498/aps.74.20241621
    [2] Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process. Acta Physica Sinica, 2024, 73(11): 113701. doi: 10.7498/aps.73.20240182
    [3] Cheng Yong-Jun, Dong Meng, Sun Wen-Jun, Wu Xiang-Min, Zhang Ya-Fei, Jia Wen-Jie, Feng Cun, Zhang Rui-Fang. Ultra-high vacuum measurement based on 7Li cold atoms manipulation. Acta Physica Sinica, 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [4] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [5] Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Physica Sinica, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [6] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [7] Li Mo, Chen Fei-Liang, Luo Xiao-Jia, Yang Li-Jun, Zhang Jian. Fundamental principles, key enabling technologies, and research progress of atom chips. Acta Physica Sinica, 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [8] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [9] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [10] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [11] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [12] Wei Chun-Hua, Yan Shu-Hua, Yang Jun, Wang Guo-Chao, Jia Ai-Ai, Luo Yu-Kun, Hu Qing-Qing. Design and control of large-detuned optical lattice based on 87Rb atoms. Acta Physica Sinica, 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [13] Yuan Yuan, Lu Xiao-Gang, Bai Jin-Hai, Li Jian-Jun, Wu Ling-An, Fu Pan-Ming, Wang Ru-Quan, Zuo Zhan-Chun. One-dimensional far-detuned optical lattice realized with a multimode 1064 nm laser. Acta Physica Sinica, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [14] Wang Qiang, Ye Chong. Dynamics of Bose-Einstein condensate trapped in a triple-well with synthetic gauge field. Acta Physica Sinica, 2012, 61(23): 230304. doi: 10.7498/aps.61.230304
    [15] Xiong Zong-Yuan, Yao Zhan-Wei, Wang Ling, Li Run-Bin, Wang Jin, Zhan Ming-Sheng. Control of atomic path in projectile cold atom gyroscope. Acta Physica Sinica, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [16] Qiu Ying, He Jun, Wang Yan-Hua, Wang Jing, Zhang Tian-Cai, Wang Jun-Min. Loading and cooling of cesium atoms in 3D optical lattice. Acta Physica Sinica, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [17] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] Luo You-Hua, Huang Zheng, Wang Yu-Zhu. . Acta Physica Sinica, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
Metrics
  • Abstract views:  4180
  • PDF Downloads:  307
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2023
  • Accepted Date:  01 October 2023
  • Available Online:  01 November 2023
  • Published Online:  05 December 2023

/

返回文章
返回
Baidu
map