搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快凝Pd82Si18合金原子团簇的演化特性及遗传机制

高明 邓永和 文大东 田泽安 赵鹤平 彭平

引用本文:
Citation:

快凝Pd82Si18合金原子团簇的演化特性及遗传机制

高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平

Evolution characteristics and hereditary mechanisms of clusters in rapidly solidified Pd82Si18 alloy

Gao Ming, Deng Yong-He, Wen Da-Dong, Tian Ze-An, Zhao He-Ping, Peng Ping
PDF
HTML
导出引用
  • 采用分子动力学(MD)模拟计算, 对Pd82Si18合金快凝过程中基本原子团簇的遗传特性、演化趋势和结构稳定性进行了研究. 团簇类型指数法(CTIM)分析表明: 非晶固体中Si原子为中心的(10 2/1441 8/1551)双帽阿基米德反棱柱(BSAP)团簇数目占据优势. 快凝过程中, BSAP结构团簇具有最大的遗传分数, 并且其他以Si原子为中心的Kasper团簇大多都会向BSAP结构团簇转变. 通过对Si原子为中心的Kasper基本团簇电子性质第一性原理计算发现, 体系中BSAP团簇的结合能最低, 结构稳定性较高, 与分子动力学计算结果一致.
    Molecular dynamics (MD) simulation and first-principles calculation were used to study the heredity characteristics, evolution trend and structural stability of basic clusters during the rapid solidification of Pd82Si18 alloy. The local atomic structures were characterized by the pair distribution function g(r) and the extended cluster-type index method (CTIM). The MD simulations reveal that the number of bi-cap Archimedes anti-prism (BSAP) clusters with CTIM index (10 2/1441 8/1551) is dominant in the amorphous solids rather than three-cap triangular prism(TTP) with CTIM index (9 3/1441 6/1551), which is identified be the most popular basic units in Pd82Si18 alloys analyzed by Voronoi index Relative to other basic clusters, the Si-centered BSAP possesses much larger fraction in the glassy state of Pd82Si18 alloys. Different from the findings in Cu-Zr alloys, the Si-centered BSAP instead of icosahedra has a larger hereditary fraction than any other Kasper clusters. During the solidification, it was found that most of the other Si-centered basic clusters are transferred into BSAP. Via the DFT calculations, it is observed that the Si-centered basic clusters with higher fraction of heredity and possesses lower binding energy. Among of them, BSAP always keeps lower binding energy than any other Si-centered Kasper clusters during the rapid solidification, resulting in its highest structural stability and the largest heredity fraction.
      通信作者: 邓永和, dengyonghe1@163.com
    • 基金项目: 国家级-Re-Ni纳米团簇生长机制的解析(51701071)
      Corresponding author: Deng Yong-He, dengyonghe1@163.com
    [1]

    Kui H W, Greer A L, Turnbull D 1984 Appl. Phys. Lett. 45 615Google Scholar

    [2]

    Inoue A 1997 Mater. Sci. Eng. A 226-228 357

    [3]

    Nelson D 1983 Phys. Rev. B 28 5515Google Scholar

    [4]

    Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508Google Scholar

    [5]

    Wen D D, Peng P, Jiang Y Q, Liu R S 2013 J. Non-Cryst. Solids 378 61Google Scholar

    [6]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [7]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202Google Scholar

    [8]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207Google Scholar

    [9]

    Luo H B, Xiong L H, Ahmad A S, Li A G, Yang K, Glazyrin K, Liermann H P, Franz H, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2014 Acta Mater. 81 420Google Scholar

    [10]

    Luo W K, Ma E 2008 J. Non-Cryst. Solids 354 945Google Scholar

    [11]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [12]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metal. Sin. 53 1659

    [13]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos.Mag. 98 2861Google Scholar

    [14]

    姚可夫, 陈娜 2008 中国科学 G 辑 38 387

    Yao K F, Chen N 2008 Sci. China Ser. G 38 387

    [15]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [16]

    https:\\www.google.com/site/eampotentials/Home/PdSi[2019-6-21]

    [17]

    Delley B 2000 J. Chem. Phys. 113 7756Google Scholar

    [18]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Mattern N, Schops A, Kuhn U, Acker J, Eckert J 2008 J. Non-Cryst. Solids 354 1054Google Scholar

    [21]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [22]

    文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 62 196101

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101

    [23]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Euro. Phys. Lett. 96 36001Google Scholar

    [24]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520Google Scholar

    [25]

    Cheng Y Q, Ding J, Ma E 2013 Mater. Res. Lett. 1 3Google Scholar

    [26]

    Jiang Y Q, Peng P, Wen D D, Han S C, Hou Z Y 2015 Comput. Mater. Sci. 99 156Google Scholar

    [27]

    Peng P, Li G F, Tian Z A, Dong K J, Liu R S 2009 Comput. Mater. Sci. 44 881Google Scholar

  • 图 1  Pd82Si18在1300 →300 K快凝过程中体系的双体分布函数(ΔT = 100 K) (a) g(r)tot; (b) g(r)tot的第一峰放大图; (c) g(r)tot第二峰放大图; (d) g(r)Pd-Sig(r)Pd-Pd第一峰的放大图

    Fig. 1.  Pair distribution functions g(r) for rapidly solidified of Pd82Si18 from 1300 to 300 K (ΔT =100 K): (a) The g(r)tot curve; (b) first peak zoom of g(r)tot curve; (c) second peak zoom of g(r)tot curve; (d) first peak zoom of g(r)Pd-Si and g(r)Pd-Pd curve.

    图 2  Pd82Si18合金在快凝过程中体系中原子的势能随温度的变化

    Fig. 2.  Average atomic potential energy of per atom in the simulated system as a function of temperature T during rapid solidification.

    图 3  CTIM指数为(10 2/1441 8/1551)和(9 3/1441 6/1551)的BSAP和TTP的结构示意图(红色的球表示Si原子, 灰色球表示Pd原子)

    Fig. 3.  Schematic diagram of BSAP and TTP with CTIM index of (10 2/1441 8/1551) and (9 3/1441 6/1551) (Red ball denote Si atom and gray balls denote Pd atoms).

    图 4  在快凝过程中Pd82Si18合金基本团簇的数量随温度的变化关系 (a)标准Kasper团簇; (b)变形的Kasper团簇

    Fig. 4.  The temperature dependence of the number of typical basic clusters in Pd82Si18 alloys: (a) Canonical Kasper clusters; (b) distorted Kasper clusters.

    图 5  BSAP基本团簇遗传示意图 (a)完全遗传; (b)核遗传

    Fig. 5.  Basic cluster heredity schematic map of BSAP: (a) Perfect heredity; (b) core heredity

    图 6  非晶合金Pd82Si18从810 K到300 K的遗传分数

    Fig. 6.  The heredity fractions in amorphous alloy Pd82Si18 from 810 K to 300 K.

    图 7  非晶合金Pd82Si18在810 K和300 K的几种基本Si为中心的团簇的结合能随团簇的分布 (a) 810 K基本Si为中心的团簇的结合能分布; (b) 300 K基本Si为中心的团簇的结合能分布; (c) 810 与300 K基本Si为中心的团簇的平均结合能分布

    Fig. 7.  Binding energies of several basic Si-centered clusters of amorphous alloy Pd82Si18 at 810 and 300 K depend on the distribution of clusters: (a) Binding energy distribution of basic Si-centered clusters at 800 K; (B) binding energy distribution of basic Si-centered clusters at 300 K; (c) distribution of average binding energy of basic Si-centered clusters at 800 and 300 K.

    图 8  基本Si为中心的团簇优化后结构的结合能随团簇的分布 (a) EAM计算; (b)第一性原理计算

    Fig. 8.  Binding energies of several optimized basic Si-centered clusters depend on the distribution of clusters: (a) EAM calculations; (b) first-principle calculations.

    图 9  局域电荷密度分布图 (a)Si原子为中心的Pd10Si团簇的局域电荷密度; (b)Si原子为中心的Pd9Si团簇的局域电子密度(图中白色和红色的字体表示切面上的原子)

    Fig. 9.  Pattern of local charge density distribution: (a) Local charge density of Si-centered Pd10Si cluster; (b) local charge density of Si-centered Pd9Si cluster(White and red fonts in the figure represents atoms on the tangent plane).

    图 10  优化后基本Si原子为中心的团簇的态密度(DOS)图 (a) Pd9Si, Pd10Si与Pd11Si团簇的DOS图; (b) 图(a)中费米能级附近的放大图

    Fig. 10.  The density of states (DOS) diagrams of optimized basic Si-centered clusters: (a) The DOS of Pd9Si、Pd10Si and Pd11Si clusters; (b) zoom of the Fermi level in (a) diagram.

    表 1  Pd82Si18合金从810 到300 K的几种基本Si原子为中心的团簇的演化分数

    Table 1.  The evolution fractions of several basic Si-centered clusters in amorphous alloy Pd82Si18 from 810 to 300 K.

    810 K300 K(9 3/1441 6/1551)(9 1/1441 4/1551 4/1431)(10 2/1441 8/1551)(10 1/1441 5/1551 1/1541 3/1431)(11 1/1441 6/1551 2/1541 2/1431)(11 2/1441 8/1551 1/1661)Sum/%
    (9 3/1441 6/1551)6.9310.399.522.169.9638.96
    (9 1/1441 4/1551 4/1431)7.7516.677.363.109.6944.57
    (10 2/1441 8/1551)5.806.9710.121.4912.9437.32
    (10 1/1441 5/1551 1/1541 3/1431)5.715.9314.732.429.6738.46
    (11 1/1441 6/1551 2/1541 2/1431)6.494.5513.6410.3911.0446.11
    (11 2/1441 8/1551 1/1661)4.774.5617.0110.583.1140.03
    Sum(%)30.5228.9472.4447.9712.2853.30
    下载: 导出CSV
    Baidu
  • [1]

    Kui H W, Greer A L, Turnbull D 1984 Appl. Phys. Lett. 45 615Google Scholar

    [2]

    Inoue A 1997 Mater. Sci. Eng. A 226-228 357

    [3]

    Nelson D 1983 Phys. Rev. B 28 5515Google Scholar

    [4]

    Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508Google Scholar

    [5]

    Wen D D, Peng P, Jiang Y Q, Liu R S 2013 J. Non-Cryst. Solids 378 61Google Scholar

    [6]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [7]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202Google Scholar

    [8]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207Google Scholar

    [9]

    Luo H B, Xiong L H, Ahmad A S, Li A G, Yang K, Glazyrin K, Liermann H P, Franz H, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2014 Acta Mater. 81 420Google Scholar

    [10]

    Luo W K, Ma E 2008 J. Non-Cryst. Solids 354 945Google Scholar

    [11]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [12]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metal. Sin. 53 1659

    [13]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos.Mag. 98 2861Google Scholar

    [14]

    姚可夫, 陈娜 2008 中国科学 G 辑 38 387

    Yao K F, Chen N 2008 Sci. China Ser. G 38 387

    [15]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [16]

    https:\\www.google.com/site/eampotentials/Home/PdSi[2019-6-21]

    [17]

    Delley B 2000 J. Chem. Phys. 113 7756Google Scholar

    [18]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Mattern N, Schops A, Kuhn U, Acker J, Eckert J 2008 J. Non-Cryst. Solids 354 1054Google Scholar

    [21]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [22]

    文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 62 196101

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101

    [23]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Euro. Phys. Lett. 96 36001Google Scholar

    [24]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520Google Scholar

    [25]

    Cheng Y Q, Ding J, Ma E 2013 Mater. Res. Lett. 1 3Google Scholar

    [26]

    Jiang Y Q, Peng P, Wen D D, Han S C, Hou Z Y 2015 Comput. Mater. Sci. 99 156Google Scholar

    [27]

    Peng P, Li G F, Tian Z A, Dong K J, Liu R S 2009 Comput. Mater. Sci. 44 881Google Scholar

  • [1] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析.  , 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] 金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波. 静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制.  , 2024, 73(8): 086401. doi: 10.7498/aps.73.20232002
    [3] 文大东, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平. 液态Ta快凝过程中团簇的遗传及其与局域对称性的关联.  , 2023, 72(24): 246101. doi: 10.7498/aps.72.20231153
    [4] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究.  , 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [5] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响.  , 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [6] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能.  , 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [7] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究.  , 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [8] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数.  , 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [9] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究.  , 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [10] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究.  , 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [11] 文大东, 彭平, 蒋元祺, 田泽安, 刘让苏. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪.  , 2013, 62(19): 196101. doi: 10.7498/aps.62.196101
    [12] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质.  , 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [13] 鲁晓宇, 廖霜, 阮莹, 代富平. 快速凝固Ti-Cu-Fe合金的相组成与组织演变规律.  , 2012, 61(21): 216102. doi: 10.7498/aps.61.216102
    [14] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究.  , 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [15] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理.  , 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [16] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征.  , 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [17] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固.  , 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [18] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认.  , 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [20] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能.  , 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
计量
  • 文章访问数:  6931
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-21
  • 修回日期:  2019-12-10
  • 刊出日期:  2020-02-20

/

返回文章
返回
Baidu
map