-
采用分子动力学方法模拟研究了液态Cu64Zr36合金在冷速50 K/ns下 的快速凝固过程, 并通过双体分布函数、Honeycutt-Andersen (H-A) 键型指数和团簇类型指数对其微结构演变特性进行了分析. 液态与快凝玻璃合金的主要原子组态都是二十面体(12 0 12 0)及其变形结构 (12 8/1551 2/1541 2/1431), 其中比例最高的是Cu芯Cu8Zr5基本原子团, 其次是Cu7Zr6和Cu9Zr4团簇; 并且由这些二十面体基本原子团铰链形成的中程序, 其尺寸分布在液相和固相中分别呈现出13, 19, 25,···和13, 19, 23, 25, 29, 37,···的幻数特征. 团簇的演化与跟踪分析发现: 没有任何团簇能从液态直接遗传到固态合金, 遗传的起始温度出现在Tm–Tg过冷液相区. 二十面体团簇的遗传主要以完全和直接遗传为主, 并且一个明显的增加发生在Tg附近. 在玻璃化转变温度Tg以下, (12 0 12 0) 二十面体比 (12 8/1551 2/1541 2/1431) 变形二十面体具有更高的结构遗传能力, 但仅有少部分在遗传过程中能保持化学成分的恒定. 通过部分遗传, 某些二十面体中程序甚至也能从过冷液体中被遗传到玻璃合金.The rapid solidification process of liquid Cu64Zr36 alloy is simulated using a molecular dynamics method. The evolution in micro-structures are analyzed by means of pair distribution functions (PDF), Honeycutt-Andersen (H-A) bond-type index method and cluster-type index method (CTIM). It is found that both of liquid and rapidly solidified solid mostly consist of (12 0 12 0) icosahedra and their distorted (12 8/1551 2/1541 2/1431) configurations at a cooling rate of 50 K/ns, most of which are Cu-centered Cu8Zr5 clusters, followed by Cu7Zr6 and then Cu9Zr4 clusters. Size distribution of icosahedral medium-range order (IMRO) clusters linked by intercross-sharing (IS) atoms in the liquid and the glassy solid presents the magic number sequences of 13, 19, 25,···and 13, 19, 23, 25, 29, 37···, respectively. The track of atoms reveals no icosahedral clusters in rapidly solidified solid that can be detected in the liquid alloy. Onset temperature of configuration heredity emerges in the supercooled liquid region of Tm–Tg. A direct and perfect heredity of icosahedra is found to be dominant and a distinct ascent in heredity fraction takes place at Tg. Compared with (12 8/1551 2/1541 2/1431) distorted icosahedra, (12 0 12 0) standard icosahedra are of high structural stability and configurational genetic ability below Tg, whereas only a few can keep their chemical composition unchanged. By partial heredity, even some IMRO clusters in super-cooled liquid can be transmitted to glassy alloy.
-
Keywords:
- rapid solidification /
- molecular dynamics /
- icosahedral clusters /
- heredity
[1] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
[2] Inoue A 2000 Acta Mater. 48 279
[3] Park E S, Kim D H, Kim W T 2005 Appl. Phys. Lett. 86 061907
[4] Xia M X, Meng Q G, Zhang S G, Ma C L, Li J G 2006 Acta Phys. Sin. 55 6543 (in Chinese) [夏明许, 孟庆格, 张曙光, 马朝利, 李建国 2006 55 6543]
[5] Han G, Qiang J B, Wang Q, Wang Y M, Xia J H, Zhu C L, Quan S G, Dong C 2012 Acta Phys. Sin. 61 036402 (in Chinese) [韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯 2012 61 036402]
[6] Wang Z Y, Yang Y S, Tong W H, Li H Q, Hu Z Q 2006 Acta Phys. Sin. 56 1543 (in Chinese) [王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒 2006 56 1543]
[7] Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys. B 18 4949
[8] Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207
[9] Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202
[10] Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203
[11] Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520
[12] Yang L, Bian X F, Pan S P, Qin J Y 2012 Acta Phys. Sin. 61 036101 (in Chinese) [杨磊, 边秀房, 潘少鹏, 秦敬玉 2012 61 036101]
[13] Wang L, Zhang Y N, Mao X M, Peng C X 2007 Chin. Phys. Lett. 24 2319
[14] Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506
[15] Ding J, Cheng Y Q, Sheng H W, Ma E 2012 Phys. Rev. B 85 060201
[16] Liu X J, Xu Y, Lu Z P, Hui X, Chen G L, Zheng G P, Liu C T 2011 Acta Mater. 59 6480
[17] Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054
[18] Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901
[19] Jing Q, Xu Y, Zhang X Y, Li G, Li L X, Xu Z, Ma M Z, Liu R P 2009 Chin. Phys. Lett. 26 086109
[20] Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philos. Mag. 89 109
[21] Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816
[22] Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194
[23] Lad K N, Jakse N, Pasturel A 2012 J. Chem. Phys. 136 104509
[24] Tian H, Zhang C, Wang L, Zhao J J, Dong C, Wen B, Wang Q 2011 J. Appl. Phys. 109 123520
[25] Plimpton S 1995 J. Comput. Phys. 117 1
[26] Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501
[27] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
[28] Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511
[29] Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001
[30] Pan S P, Qin J Y, Wang W M, Gu T K 2012 J. Non-Cryst. Solids 358 1873
[31] Doye J P K, Wales D J 2003 J. Chem. Phys. 118 2792
[32] Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P 2008 J. Phys. Chem. A 112 12326
-
[1] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
[2] Inoue A 2000 Acta Mater. 48 279
[3] Park E S, Kim D H, Kim W T 2005 Appl. Phys. Lett. 86 061907
[4] Xia M X, Meng Q G, Zhang S G, Ma C L, Li J G 2006 Acta Phys. Sin. 55 6543 (in Chinese) [夏明许, 孟庆格, 张曙光, 马朝利, 李建国 2006 55 6543]
[5] Han G, Qiang J B, Wang Q, Wang Y M, Xia J H, Zhu C L, Quan S G, Dong C 2012 Acta Phys. Sin. 61 036402 (in Chinese) [韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯 2012 61 036402]
[6] Wang Z Y, Yang Y S, Tong W H, Li H Q, Hu Z Q 2006 Acta Phys. Sin. 56 1543 (in Chinese) [王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒 2006 56 1543]
[7] Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys. B 18 4949
[8] Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207
[9] Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202
[10] Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203
[11] Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520
[12] Yang L, Bian X F, Pan S P, Qin J Y 2012 Acta Phys. Sin. 61 036101 (in Chinese) [杨磊, 边秀房, 潘少鹏, 秦敬玉 2012 61 036101]
[13] Wang L, Zhang Y N, Mao X M, Peng C X 2007 Chin. Phys. Lett. 24 2319
[14] Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506
[15] Ding J, Cheng Y Q, Sheng H W, Ma E 2012 Phys. Rev. B 85 060201
[16] Liu X J, Xu Y, Lu Z P, Hui X, Chen G L, Zheng G P, Liu C T 2011 Acta Mater. 59 6480
[17] Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054
[18] Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901
[19] Jing Q, Xu Y, Zhang X Y, Li G, Li L X, Xu Z, Ma M Z, Liu R P 2009 Chin. Phys. Lett. 26 086109
[20] Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philos. Mag. 89 109
[21] Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816
[22] Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194
[23] Lad K N, Jakse N, Pasturel A 2012 J. Chem. Phys. 136 104509
[24] Tian H, Zhang C, Wang L, Zhao J J, Dong C, Wen B, Wang Q 2011 J. Appl. Phys. 109 123520
[25] Plimpton S 1995 J. Comput. Phys. 117 1
[26] Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501
[27] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
[28] Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511
[29] Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001
[30] Pan S P, Qin J Y, Wang W M, Gu T K 2012 J. Non-Cryst. Solids 358 1873
[31] Doye J P K, Wales D J 2003 J. Chem. Phys. 118 2792
[32] Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P 2008 J. Phys. Chem. A 112 12326
计量
- 文章访问数: 7637
- PDF下载量: 569
- 被引次数: 0