Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal diffusion coupling mechanism and its application of discrete waveguide

Meng Ling-Zhi Yuan Li-Bo

Citation:

Thermal diffusion coupling mechanism and its application of discrete waveguide

Meng Ling-Zhi, Yuan Li-Bo
PDF
HTML
Get Citation
  • For discrete optical systems integrated into optical fibers, the optical fields of the individual waveguides are coupled and correlated with each other. This paper studies how to adjust the refractive index of discrete waveguides by thermal diffusion, so as to enhance the coupling between discrete waveguides, and also constructs the discrete waveguide thermally diffused model and the thermally diffused coupling model of twin-core and three-core fibers. The multicore fiber is heated different times by a hydrogen-oxygen flame, and the outgoing light field at the end face of the optical fiber is monitored at the same time. Then, the three-dimensional refractive index measurement results of the thermally diffused multicore fiber verify the feasibility of thermal diffusion technology to change the refractive index of discrete waveguides for coupling. Thermal diffusion technology can be used to fabricate multicore fiber couplers. By combining multicore fiber and core-by-core inscribed fiber Bragg grating technology and by using thermal diffusion technology, the single-channel sensing measurement can be realized. The method of changing the refractive index of discrete waveguides through thermal diffusion has the advantages of high integration, high stability, and mass fabrication. The research on the thermal diffusion of discrete waveguides can improve the application potential of multicore fiber sensing systems, and promote the broad application of discrete waveguide structure optical fiber in the fields of optical communication, optical sensing, biomedicine, and artificial intelligence.
      Corresponding author: Yuan Li-Bo, lbyuan@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61827819) and the Bagui Scholars Program of Guangxi Zhuang Autonomous Region, China (Grant No. 2019A38).
    [1]

    Slussarenko S, Pryde G J 2019 Appl. Phys. Rev. 6 041303Google Scholar

    [2]

    Xiong Y F, Xu F 2020 Adv. Photonics 2 064001Google Scholar

    [3]

    Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, Volz S 2022 Phys. Rev. Lett. 128 015901Google Scholar

    [4]

    Yuan L B, Dai Q, Tian F J, Zhang T, Guan C Y, Zhu X L 2009 Opt. Lett. 34 1531Google Scholar

    [5]

    Meng L Z, Chen G D, Wang D H, Yuan L B 2021 J. Light. Technol. 39 3638Google Scholar

    [6]

    Huo Y M, Cheo P K, King G G 2004 Opt. Express 12 6230Google Scholar

    [7]

    Wrage M, Glas P, Fischer D, Leitner M, Elkin N N, Vysotsky D V, Napartovich A P, Troshchieva V N 2002 Opt. Commun. 205 367Google Scholar

    [8]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2012 J. Light. Technol. 30 583Google Scholar

    [9]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2011 Opt. Express 19 16576Google Scholar

    [10]

    苑立波, 张新平, 苑婷婷, 徐飞, 刘艳格, 龚元, 彭伟, 郭团, 王鹏飞, 王义平, 王东宁 2023 怎样在光纤上构建实验室 (北京: 清华大学出版社) 第81页

    Yuan L B, Zhang X P, Yuan T T, Xu F, Liu Y G, Guo Y, Peng W, Guo T, Wang P F, Wang Y P, Wang D N 2023 How to Bulid a-Lab-on/in-Fiber (Beijing: Tsinghua Unisiverty Press) p81

    [11]

    Mills A F 1995 Heat and Mass Transfer (Boca Raton: CRC Press) p811

    [12]

    Shiraishi K, Aizawa Y, Kawakami S 1990 J. Light. Technol. 8 1151Google Scholar

    [13]

    Crank J 1979 The Mathematics of Diffusion (Oxford: Clarendon Press) p69

    [14]

    Barenblatt G I 1996 Scaling, self-similarity, and intermediate asymptotics (Cambridge: Cambridge University Press) p64

    [15]

    Kliros G S, Tsironikos N 2005 Optik 116 365Google Scholar

    [16]

    Zhu X L, Yuan L B, Liu Z H, Yang J, Guan C Y 2009 J. Light. Technol. 27 5235Google Scholar

    [17]

    Kliros G 2011 Optoelectron. Adv. Mater.-Rapid Commun. 5 193

    [18]

    Snyder A W, Love J D 1984 Optical Waveguide Theory (New York: Springer) p568

    [19]

    Yablon A D 2013 Opt. Lett. 38 4393Google Scholar

    [20]

    Yablon A D 2005 Optical Fiber Fusion Splicing (Berlin: Springer-Verlag) p74

    [21]

    Yuan L B, Liu Z H, Yang J 2006 Opt. Lett. 31 3237Google Scholar

    [22]

    Zhang H J, Healy N, Dasgupta S, Hayes J R, Petrovich M N, Richardson D J, Peacock A C 2017 IEEE Photonics Technol. Lett. 29 591Google Scholar

    [23]

    Zhang F M, Liu Z Y X, Du H Z, Shao Y H, Shen L, Yang L B, Yan C K, Zhao Z Y, Tang M 2022 Opt. Express 30 19042Google Scholar

    [24]

    Zhao Y J, Zhou A, Ouyang X W, Ouyang Y, Zhou C M, Yuan L B 2017 J. Light. Technol. 35 5473Google Scholar

    [25]

    Bao W J, Sahoo N, Sun Z Y, Wang C L, Liu S, Wang Y P, Zhang L 2020 Opt. Express 28 26461Google Scholar

    [26]

    Zhao Z Y, Dang Y L, Tang M 2022 Photonics 9 381Google Scholar

  • 图 1  典型的线性分布离散波导[10] (a) 多个离散波导按线性分布在一个包层中的光纤; (b) 线性阵列多芯光纤的横截面显微图; (c) 线性阵列多芯光纤的折射率剖面示意图

    Figure 1.  A typical linear distributed discrete waveguide[10]: (a) Optical fiber with multiple discrete waveguides linearly distributed in the same cladding; (b) micrograph of the cross-section of the linear array multicore fiber; (c) schematic diagram of the refractive index profile of the linear array multicore fiber.

    图 2  (a) 用于热扩散的实验装置示意图; (b) 双芯、(c) 三芯、(d) 四芯和 (e) 七芯光纤加热不同时间后的端面强度分布

    Figure 2.  (a) Schematic diagram of the experimental setup for thermal diffusion; (b)–(e) the end face light intensity distribution of the (b) twin-core, (c) three-core, (d) four-core, and (e) seven-core optical fiber after heating at different times.

    图 3  折射率分布测量系统的示意图

    Figure 3.  Schematic diagram of the refractive index distribution measurement system.

    图 4  加热时间分别为 (a) 0, (b) 30, (c) 60, (d) 90 min时, 双芯光纤热扩散区y-z方向的折射率分布; 加热时间分别为 (e) 0, (f) 30, (g) 60 , (h) 90 min时, 双芯光纤热扩散区的三维折射率分布

    Figure 4.  Refractive index distribution in the y-z direction of the thermally diffused zone of the twin-core fiber when the heating time is (a) 0, (b) 30, (c) 60 and (d) 90 min, respectively. The three-dimensional refractive index distribution of the thermally diffused zone of the twin-core fiber when the heating time is (e) 0, (f) 30, (g) 60 and (h) 90 min.

    图 5  加热时间分别为 (a) 0, (b) 30, (c) 60, (d) 90 min时, 三芯光纤热扩散区y-z方向的折射率分布; 加热时间分别为 (e) 0, (f) 30, (g) 60, (h) 90 min时, 三芯光纤热扩散区的三维折射率分布

    Figure 5.  Refractive index distribution in the y-z direction of the thermally diffused zone of the three-core fiber when the heating time is (a) 0, (b) 30, (c) 60 and (d) 90 min, respectively. The three-dimensional refractive index distribution of the thermally diffused zone of the three-core fiber when the heating time is (e) 0, (f) 30, (g) 60 and (h) 90 min.

    图 6  加热时间分别为 (a) 0, (b) 30, (c) 60, (d) 90 min时, 四芯光纤热扩散区y-z方向的折射率分布; 加热时间分别为 (e) 0, (f) 30, (g) 60, (h) 90 min时, 四芯光纤热扩散区的三维折射率分布

    Figure 6.  Refractive index distribution in the y-z direction of the thermally diffused zone of the four-core fiber when the heating time is (a) 0, (b) 30, (c) 60 and (d) 90 min, respectively. The three-dimensional refractive index distribution of the thermally diffused zone of the four-core fiber when the heating time is (e) 0, (f) 30, (g) 60 and (h) 90 min.

    图 7  加热时间分别为 (a) 0, (b) 30, (c) 60, (d) 90 min时, 七芯光纤热扩散区y-z方向的折射率分布; 加热时间分别为 (e) 0, (f) 30, (g) 60, (h) 90 min时, 七芯光纤热扩散区的三维折射率分布

    Figure 7.  Rfractive index distribution in the y-z direction of the thermally diffused zone of the seven-core fiber when the heating time is (a) 0, (b) 30, (c) 60 and (d) 90 min, respectively. The three-dimensional refractive index distribution of the thermally diffused zone of the seven-core fiber when the heating time is (e) 0, (f) 30, (g) 60 and (h) 90 min.

    图 8  (a) 热扩散制备的三芯光纤耦合器的示意图; 不同加热时间的三芯光纤端面的强度分布, 其中(b) 0 min; (c) 30 min; (d) 60 min; (e) 90 min

    Figure 8.  (a) Schematic diagram of a three-core fiber fabricated by thermal diffusion. The intensity distribution at the end face of the three-core fiber coupler with different heating times: (b) 0 min; (c) 30 min; (d) 60 min; (e) 90 min.

    图 9  (a) 应用热扩散技术的弯曲传感器的示意图; (b) 不同弯曲方向(从0°到360°)对应的双芯光纤两个纤芯中FBGs的差分的弯曲灵敏度

    Figure 9.  (a) Schematic diagram of the bending sensor structure using thermal diffusion technology; (b) differential bending sensitivity of FBGs in the two cores of a twin-core fiber plotted for various bending directions (from 0° to 360°)

    Baidu
  • [1]

    Slussarenko S, Pryde G J 2019 Appl. Phys. Rev. 6 041303Google Scholar

    [2]

    Xiong Y F, Xu F 2020 Adv. Photonics 2 064001Google Scholar

    [3]

    Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, Volz S 2022 Phys. Rev. Lett. 128 015901Google Scholar

    [4]

    Yuan L B, Dai Q, Tian F J, Zhang T, Guan C Y, Zhu X L 2009 Opt. Lett. 34 1531Google Scholar

    [5]

    Meng L Z, Chen G D, Wang D H, Yuan L B 2021 J. Light. Technol. 39 3638Google Scholar

    [6]

    Huo Y M, Cheo P K, King G G 2004 Opt. Express 12 6230Google Scholar

    [7]

    Wrage M, Glas P, Fischer D, Leitner M, Elkin N N, Vysotsky D V, Napartovich A P, Troshchieva V N 2002 Opt. Commun. 205 367Google Scholar

    [8]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2012 J. Light. Technol. 30 583Google Scholar

    [9]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2011 Opt. Express 19 16576Google Scholar

    [10]

    苑立波, 张新平, 苑婷婷, 徐飞, 刘艳格, 龚元, 彭伟, 郭团, 王鹏飞, 王义平, 王东宁 2023 怎样在光纤上构建实验室 (北京: 清华大学出版社) 第81页

    Yuan L B, Zhang X P, Yuan T T, Xu F, Liu Y G, Guo Y, Peng W, Guo T, Wang P F, Wang Y P, Wang D N 2023 How to Bulid a-Lab-on/in-Fiber (Beijing: Tsinghua Unisiverty Press) p81

    [11]

    Mills A F 1995 Heat and Mass Transfer (Boca Raton: CRC Press) p811

    [12]

    Shiraishi K, Aizawa Y, Kawakami S 1990 J. Light. Technol. 8 1151Google Scholar

    [13]

    Crank J 1979 The Mathematics of Diffusion (Oxford: Clarendon Press) p69

    [14]

    Barenblatt G I 1996 Scaling, self-similarity, and intermediate asymptotics (Cambridge: Cambridge University Press) p64

    [15]

    Kliros G S, Tsironikos N 2005 Optik 116 365Google Scholar

    [16]

    Zhu X L, Yuan L B, Liu Z H, Yang J, Guan C Y 2009 J. Light. Technol. 27 5235Google Scholar

    [17]

    Kliros G 2011 Optoelectron. Adv. Mater.-Rapid Commun. 5 193

    [18]

    Snyder A W, Love J D 1984 Optical Waveguide Theory (New York: Springer) p568

    [19]

    Yablon A D 2013 Opt. Lett. 38 4393Google Scholar

    [20]

    Yablon A D 2005 Optical Fiber Fusion Splicing (Berlin: Springer-Verlag) p74

    [21]

    Yuan L B, Liu Z H, Yang J 2006 Opt. Lett. 31 3237Google Scholar

    [22]

    Zhang H J, Healy N, Dasgupta S, Hayes J R, Petrovich M N, Richardson D J, Peacock A C 2017 IEEE Photonics Technol. Lett. 29 591Google Scholar

    [23]

    Zhang F M, Liu Z Y X, Du H Z, Shao Y H, Shen L, Yang L B, Yan C K, Zhao Z Y, Tang M 2022 Opt. Express 30 19042Google Scholar

    [24]

    Zhao Y J, Zhou A, Ouyang X W, Ouyang Y, Zhou C M, Yuan L B 2017 J. Light. Technol. 35 5473Google Scholar

    [25]

    Bao W J, Sahoo N, Sun Z Y, Wang C L, Liu S, Wang Y P, Zhang L 2020 Opt. Express 28 26461Google Scholar

    [26]

    Zhao Z Y, Dang Y L, Tang M 2022 Photonics 9 381Google Scholar

  • [1] Sun Jia-Cheng, Wang Ting-Ting, Dai Yang, Chang Jian-Hua, Ke Wei. Multi-parameter measurement sensor based on no-core fiber. Acta Physica Sinica, 2021, 70(6): 064202. doi: 10.7498/aps.70.20201474
    [2] Jin Wen-Xing, Ren Guo-Bin, Pei Li, Jiang You-Chao, Wu Yue, Shen Ya, Yang Yu-Guang, Ren Wen-Hua, Jian Shui-Sheng. Dual-mode large-mode-area multi-core fiber with circularly arranged airhole cores. Acta Physica Sinica, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [3] Xiao Ya-Ling, Liu Yan-Ge, Wang Zhi, Liu Xiao-Qi, Luo Ming-Ming. Design and experimental study of mode selective all-fiber fused mode coupler based on few mode fiber. Acta Physica Sinica, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [4] Xu Min-Nan, Zhou Gui-Yao, Chen Cheng, Hou Zhi-Yun, Xia Chang-Ming, Zhou Gai, Liu Hong-Zhan, Liu Jian-Tao, Zhang Wei. Analysis of a novel four-mode micro-structured fiber with low-level crosstalk and high mode differential group delay. Acta Physica Sinica, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [5] Zhou Jian-Zhong, Chen Bao-Xue, Li Jia-Wei, Wang Guan-De, Hiromi Hamanaka. Study on pulse coupler of optical waveguide. Acta Physica Sinica, 2014, 63(1): 014211. doi: 10.7498/aps.63.014211
    [6] Xie Di-Ni, Peng Hong-Shang, Huang Shi-Hua, You Fang-Tian, Wang Xiao-Hui. Hydrothermal diffusion of Eu3+ in EuVO4@YVO4 core-shell nanoparticles and its influence on luminescent properties. Acta Physica Sinica, 2014, 63(14): 147801. doi: 10.7498/aps.63.147801
    [7] Jiang Zi-Wei, Bai Jin-Jun, Hou Yu, Wang Xiang-Hui, Chang Sheng-Jiang. Terahertz dual air core fiber directional coupler. Acta Physica Sinica, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [8] Zheng Si-Wen, Lin Zhen, Ren Guo-Bin, Jian Shui-Sheng. Design and analysis of novel multi-core dual-mode large-mode-area optical fiber. Acta Physica Sinica, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [9] Pei Li, Zhao Rui-Feng. Analysis of unified unsymmetric lateral coupled-mode theory of optical waveguide. Acta Physica Sinica, 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [10] Wang Li-Wen, Lou Shu-Qin, Chen Wei-Guo, Lu Wen-Liang, Wang Xin. Design and optimization of a novel broadband and polarization-insensitive dual-core photonic crystal fiber coupler over the whole optical communication band. Acta Physica Sinica, 2012, 61(15): 154207. doi: 10.7498/aps.61.154207
    [11] Bai Jin-Jun, Wang Chang-Hui, Hou Yu, Fan Fei, Chang Sheng-Jiang. Terahertz dual-core photonic band-gap fiber directional coupler. Acta Physica Sinica, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [12] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [13] Jiang Wei-Wei, Fan Lin-Yong, Zhao Rui-Feng, Wei Yan, Pei Li, Jian Shui-Sheng. Comb-filter based on two core fiber coupler and its CO2 laser trimming. Acta Physica Sinica, 2011, 60(4): 044214. doi: 10.7498/aps.60.044214
    [14] Jia Wei-Guo, Zhou Yan-Yong, Han Yong-Ming, Bao Hong-Mei, Yang Sheng-Ji. Scalar modulation instability in photonic crystal fiber couplers. Acta Physica Sinica, 2009, 58(9): 6323-6329. doi: 10.7498/aps.58.6323
    [15] Li Qi-Liang, Xie Yu-Yong, Zhu Yin-Fang, Zhao Zhi-Jin, Wang Tian-Shu, Qian Sheng, Lin Li-Bin. Switching in three-core nonlinear fiber coupler with second order coupling dispersion coefficient. Acta Physica Sinica, 2008, 57(9): 5651-5661. doi: 10.7498/aps.57.5651
    [16] Sun Yi-Ling, Pan Jian-Xia. Analysis of the fully destructive interference of overlapping-images in MMI couplers. Acta Physica Sinica, 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
    [17] Yu You-Long, Cao Xue, Liu Sheng-Chun, Chen Xue-Feng. Properties of the fused silicon fiber-reflector. Acta Physica Sinica, 2007, 56(11): 6490-6495. doi: 10.7498/aps.56.6490
    [18] Dong Xiao-Wei, Pei-Li, Jian Shui-Sheng. Add/drop channel filter based on fiber-Bragg-grating-assisted coupler fabricated by asymmetric fused taper technology. Acta Physica Sinica, 2006, 55(9): 4739-4743. doi: 10.7498/aps.55.4739
    [19] Xiao Jin-Biao, Ma Chang-Feng, Zhang Ming-De, Sun Xiao-Han. Quasi-vectorial analysis of the optical characteristics of rib waveguides and directional couplers based on InGaAs/InAlAs multiple quantum wells. Acta Physica Sinica, 2006, 55(1): 254-260. doi: 10.7498/aps.55.254
    [20] YU ZHONG-YUAN, ZHANG XIAO-GUANG, LIU XIU-MIN. SHORT OPTICAL PULSE SWITCHING IN THREE-CORE NONLINEAR FIBER COUPLERS. Acta Physica Sinica, 2001, 50(5): 904-909. doi: 10.7498/aps.50.904
Metrics
  • Abstract views:  2147
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  15 February 2023
  • Accepted Date:  25 August 2023
  • Available Online:  15 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回
Baidu
map