-
In this article, the first principles calculation method is used to study the MoSi2N4/GeC heterostructures, and calculate its structural, electronic, and optical properties. And the effects of different biaxial strains and vertical electric fields on the band structure and optical absorption characteristics of the heterostructures are also investigated. MoSi2N4/GeC heterostructure is an indirect bandgap semiconductor with a bandgap of 1.25 eV, with the built-in electric field direction pointing from the GeC layer to the MoSi2N4 layer. In addition, its photogenerated carrier transfer mechanism conforms to the S-type heterostructures mechanism, thus improving the oxidation reduction potential of photocatalytic water decomposition, making it fully meet the requirements of photocatalytic water decomposition with pH = 0–14. Under biaxial strain, the band gap first increases and then decreases with the increase of compressive strain, and the light absorption performance in the ultraviolet region increases with compressive strain increasing. The band gap decreases as tensile strain increases, and the light absorption performance in the visible light region is enhanced in comparison with its counterpart under compressive strain. Under a vertical electric field, the band gap increases with positive electric field increasing, and decreases with negative electric field increasing. In summary, MoSi2N4/GeC heterostructures can be used as an efficient photocatalytic material in some fields such as optoelectronic devices and photocatalysis.
-
Keywords:
- S-type heterostructures /
- photocatalytic water decomposition /
- biaxial strain regulation /
- vertical electric field regulation
[1] 熊子谦, 张鹏程, 康文斌, 方文玉 2020 69 166301Google Scholar
Xiong Z Q, Zhang P C, Kang W B, Fang W Y 2020 Acta Phys. Sin. 69 166301Google Scholar
[2] Cai X F, Huang Y W, Hu J Z, Zhu S W, Tian X H, Zhang K, Ji G J, Zhang Y X, Fu Z D, Tan C L 2020 J. Catal. 10 1208Google Scholar
[3] Yang K, Huang W Q, Xu L, Luo W K, Yang Y C, Huang G F 2016 Mater. Sci. Semicond. Process. 41 200Google Scholar
[4] Sun Z Y, Xu J, Nsajigwa M, Yang W X, Wu X W, Yi Z, Chen S J, Zhang W B 2022 Commun. Theor. Phys. 74 015503Google Scholar
[5] Bohayra M, Brahmanandam J, Fazel S, Rabczuk T, Shapeev A V, Zhuang X Y 2021 Nano Energy 82 105716Google Scholar
[6] Hong Y L, Liu Z B, Wang L, Zhou T Y, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun M D, Chen X Q, Cheng M H, Ren W C 2020 Science 369 670Google Scholar
[7] Cao L M, Zhou G H, Wang Q Q, Ang L K, Ang Y S 2021 Appl. Phys. Lett. 8 013106
[8] Li Y H, Ho W K, Lü K L, Zhu B C, Li C S 2018 Appl. Surf. Sci. 430 380Google Scholar
[9] Zhu Z, Tang X, Wang T, Fan W Q, Liu Z, Li C X, Huo P W, Yan Y S 2018 Appl. Catal. B 241 319
[10] Li S J, Li Y Y, Shao L X, Wang C D 2021 Chemistry Select 6 181
[11] Chen H, Li Y, Huang L, Li J B 2015 J. Phys. Chem. C 119 29148Google Scholar
[12] King’ori G W, Ouma C N M, Mishra A K, Amolo G O, Makau N W T 2020 RSC Adv. 10 30127Google Scholar
[13] Chen Y C, Tang Z Y, Shan H L, Jiang B, Ding Y L, Luo X, Zheng Y 2021 Phys. Rev. B 104 075449Google Scholar
[14] Zhang X, Chen A, Zhang Z H, Jiao M G, Zhou Z 2019 Nanoscale Adv. 1 154Google Scholar
[15] He Y, Zhang M, Shi J J, Cen Y L, Wu M 2019 J. Phys. Chem. C 123 12781
[16] Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K, Dai N 2016 ACS Nano 10 3852Google Scholar
[17] Jacobs D A, Langenhorst M, Sahli F, Richards B S, Paetzold U W 2019 J. Phys. Chem. Lett. 10 3159Google Scholar
[18] He C, Zhang J H, Zhang W X, Li T T 2019 J. Phys. Chem. Lett. 10 3122Google Scholar
[19] Fang L, Ni Y, Hu J S, Tong Z F, Ma X G, Lü H, Hou S C 2022 Phys. E 143 115321Google Scholar
[20] Liu C Y, Wang Z W, Xiong W Q, Zhong H X, Yuan S J 2022 J. App. Phys. 131 163102Google Scholar
[21] 罗铖, 龙庆, 程蓓, 朱必成, 王临曦 2023 物理化学学报 39 2212026Google Scholar
Luo C, Long Q, Cheng B, Zhu B C, Wang L X 2023 Acta Phys. Chim. Sin. 39 2212026Google Scholar
[22] 梅子慧, 王国宏, 严素定, 王娟 2021 物理化学学报 37 2009097Google Scholar
Mei Z H, Wang G H, Yan S J, Wang J 2021 Acta Phys. Chim. Sin. 37 2009097Google Scholar
[23] Dhakal K P, Roy S, Jang H, Chen X, Yun W S, Kim H, Lee J, Kim J, Ahn J H 2017 Chem. Mater. 29 5124Google Scholar
[24] Ji Y J, Dong H L, Hou T J, Li Y Y 2018 J. Mater. Chem. A 6 2212Google Scholar
[25] Fan X P, Jiang J W, Li R, Guo L, Mi W B 2022 Chem. Phys. Lett. 805 139968
[26] Kresse G, Furthmüller J 1996 Comp. Mat. Sci. 54 11169Google Scholar
[27] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar
[28] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[29] Shi J Y, Ou Y, Max A M, Wang H Y, Li H, Zhang Y, Gu Y S, Zou M Q 2019 Comput. Mater. Sci. 160 301Google Scholar
[30] Guo R, Luan L J, Cao M Y, Zhang Y, Wei X, Fan J B, Ni L, Liu C, Yang Y, Liu J, Tian Y, Duan L 2023 Phys. E 149 115628
[31] Li R X, Tian X L, Zhu S C, Mao Q H, Ding J, Li H D 2022 Phys. E 144 115443
[32] Yang F, Zhuo Z G, Han J N, Cao X C, Tao Y, Zhang L, Liu W J, Zhu Z Y, Dai Y H 2021 Superlattice. Microst. 156 106935
[33] 赵婷婷, 姚曼, 王旭东 2023 材料研究与应用 17 205Google Scholar
Zhao T T, Yao M, Wang X D 2023 Mater. Res. Appl. 17 205Google Scholar
[34] Bader R F W 1991 Chem. Rev. 91 893Google Scholar
[35] 栾丽君, 何易, 王涛, Liu Z W 2021 70 166302Google Scholar
Luan L J, He Y, Wang T, Liu Z W 2021 Acta Phys. Sin. 70 166302Google Scholar
[36] Wang J Q, Cheng H, Wei D Q, Li Z H 2022 Chin. J. Cat. 43 2606Google Scholar
[37] Zhu Y K, Zhuang Y, Wang L L, Tang H, Meng X F, She X L 2022 Chin. J. Cat. 43 2558Google Scholar
[38] Zhao Z L, B J, Zhao L N, Wu H J, Xu S, Sun L, Li Z J, Zhang Z Q, Jing L Q 2022 Chin. J. Cat. 43 1331Google Scholar
[39] Wang J, Wang G H, Cheng B, Yu J G, Fan J J 2021 Chin. J. Catal. 42 56Google Scholar
[40] Luo J H, Lin Z X, Zhao Y, Jiang S J, Song S Q 2020 Chin. J. Catal. 41 130
[41] Ye J X, Liu J W, An Y K 2020 Appl. Surf. Sci. 501 144262Google Scholar
[42] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能 2022 71 097301Google Scholar
Liu C X, Pang G W, Pan D Q, Shi L Q, Zhang L L, Lei B C, Zhao X C, Huang Y N 2022 Acta Phys. Sin. 71 097301Google Scholar
[43] Navarro Yerga Rufino M, Alvarez Galván M Consuelo, del Valle F, Villoria de la Mano José A, Fierro José L G 2009 Chem. Sus. Chem. 2 471Google Scholar
[44] Wang Z, Zhang Y, Wei X, Guo T T, Fan J B, Ni L, Weng Y J, Zha Z D, Liu J, Tian Y, Li T, Duan L 2020 Phys. Chem. Chem. Phys. 22 9630Google Scholar
[45] Li X R, Dai Y, Ma Y D, Han S H, Huang B B 2014 Phys. Chem. 16 4230Google Scholar
[46] Bai K F, Cui Z, Li E L, Ding Y C, Zheng J S, Liu C, Zheng Y P 2020 Vacuum 180 109562Google Scholar
-
图 5 MoSi2N4/GeC vdWs异质结沿Z方向的电子特性 (a) 静电势图 (蓝色虚线表示费米能级); (b) 平均平面电荷密度图 (插图是差分电荷密度图, 红色和黄色分别代表电荷的积累和消耗)
Figure 5. Electronic properties of MoSi2N4/GeC vdWs heterostructure along Z direction: (a) Electrostatic potential diagram (Blue dotted line indicates Fermi energy level); (b) average plane charge density diagram (Inset is a differential charge density plot with red and yellow representing charge accumulation and consumption, respectively).
图 9 不同双轴应变下MoSi2N4/GeC vdWs异质结的能带结构 (a) ε = –8%; (b) ε = –6%; (c) ε = –4%; (d) ε = –2%; (e) ε = 2%; (f) ε = 4%; (g) ε = 6%; (h) ε = 8%
Figure 9. Band structures of MoSi2N4/GeC vdWs heterostructure under different biaxial strains: (a) ε = –8%; (b) ε = –6%; (c) ε = –4%; (d) ε = –2%; (e) ε = 2%; (f) ε = 4%; (g) ε = 6%; (h) ε = 8%.
图 10 不同电场下MoSi2N4/GeC vdWs异质结的能带结构 (a) E = –0.4 V/Å; (b) E = –0.3 V/Å; (c) E = –0.2 V/Å; (d) E = –0.1 V/Å; (e) E = 0.1 V/Å; (f) E = 0.2 V/Å; (g) E = 0.3 V/Å; (h) E = 0.4 V/Å
Figure 10. Band structure of MoSi2N4/GeC vdWs heterostructures under different field: (a) E = –0.4 V/Å; (b) E = –0.3 V/Å; (c) E = –0.2 V/Å; (d) E = –0.1 V/Å; (e) E = 0.1 V/Å; (f) E = 0.2 V/Å; (g) E = 0.3 V/Å; (h) E = 0.4 V/Å.
表 1 MoSi2N4和GeC的带隙(Eg)、功函数(Φ)、晶格常数(a)以及Ge—C, Mo—N和两种不同Si—N的键长dg (T1和T2分别代表两种不同的Si—N键键长)
Table 1. Band gap (Eg), work function (Φ), lattice constants (a) of MoSi2N4 and GeC and Ge—C, Mo—N and two different Si—N bond lengths (dg) (T1 and T2 represent two different Si—N bond lengths, respectively).
Eg/eV Φ/eV a/Å dg/Å Ge—C Mo—N T1 T2 MoSi2N4 1.80 5.20 2.910 — 2.096 1.747 1.755 GeC 2.07 4.63 3.265 1.883 — — — -
[1] 熊子谦, 张鹏程, 康文斌, 方文玉 2020 69 166301Google Scholar
Xiong Z Q, Zhang P C, Kang W B, Fang W Y 2020 Acta Phys. Sin. 69 166301Google Scholar
[2] Cai X F, Huang Y W, Hu J Z, Zhu S W, Tian X H, Zhang K, Ji G J, Zhang Y X, Fu Z D, Tan C L 2020 J. Catal. 10 1208Google Scholar
[3] Yang K, Huang W Q, Xu L, Luo W K, Yang Y C, Huang G F 2016 Mater. Sci. Semicond. Process. 41 200Google Scholar
[4] Sun Z Y, Xu J, Nsajigwa M, Yang W X, Wu X W, Yi Z, Chen S J, Zhang W B 2022 Commun. Theor. Phys. 74 015503Google Scholar
[5] Bohayra M, Brahmanandam J, Fazel S, Rabczuk T, Shapeev A V, Zhuang X Y 2021 Nano Energy 82 105716Google Scholar
[6] Hong Y L, Liu Z B, Wang L, Zhou T Y, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun M D, Chen X Q, Cheng M H, Ren W C 2020 Science 369 670Google Scholar
[7] Cao L M, Zhou G H, Wang Q Q, Ang L K, Ang Y S 2021 Appl. Phys. Lett. 8 013106
[8] Li Y H, Ho W K, Lü K L, Zhu B C, Li C S 2018 Appl. Surf. Sci. 430 380Google Scholar
[9] Zhu Z, Tang X, Wang T, Fan W Q, Liu Z, Li C X, Huo P W, Yan Y S 2018 Appl. Catal. B 241 319
[10] Li S J, Li Y Y, Shao L X, Wang C D 2021 Chemistry Select 6 181
[11] Chen H, Li Y, Huang L, Li J B 2015 J. Phys. Chem. C 119 29148Google Scholar
[12] King’ori G W, Ouma C N M, Mishra A K, Amolo G O, Makau N W T 2020 RSC Adv. 10 30127Google Scholar
[13] Chen Y C, Tang Z Y, Shan H L, Jiang B, Ding Y L, Luo X, Zheng Y 2021 Phys. Rev. B 104 075449Google Scholar
[14] Zhang X, Chen A, Zhang Z H, Jiao M G, Zhou Z 2019 Nanoscale Adv. 1 154Google Scholar
[15] He Y, Zhang M, Shi J J, Cen Y L, Wu M 2019 J. Phys. Chem. C 123 12781
[16] Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K, Dai N 2016 ACS Nano 10 3852Google Scholar
[17] Jacobs D A, Langenhorst M, Sahli F, Richards B S, Paetzold U W 2019 J. Phys. Chem. Lett. 10 3159Google Scholar
[18] He C, Zhang J H, Zhang W X, Li T T 2019 J. Phys. Chem. Lett. 10 3122Google Scholar
[19] Fang L, Ni Y, Hu J S, Tong Z F, Ma X G, Lü H, Hou S C 2022 Phys. E 143 115321Google Scholar
[20] Liu C Y, Wang Z W, Xiong W Q, Zhong H X, Yuan S J 2022 J. App. Phys. 131 163102Google Scholar
[21] 罗铖, 龙庆, 程蓓, 朱必成, 王临曦 2023 物理化学学报 39 2212026Google Scholar
Luo C, Long Q, Cheng B, Zhu B C, Wang L X 2023 Acta Phys. Chim. Sin. 39 2212026Google Scholar
[22] 梅子慧, 王国宏, 严素定, 王娟 2021 物理化学学报 37 2009097Google Scholar
Mei Z H, Wang G H, Yan S J, Wang J 2021 Acta Phys. Chim. Sin. 37 2009097Google Scholar
[23] Dhakal K P, Roy S, Jang H, Chen X, Yun W S, Kim H, Lee J, Kim J, Ahn J H 2017 Chem. Mater. 29 5124Google Scholar
[24] Ji Y J, Dong H L, Hou T J, Li Y Y 2018 J. Mater. Chem. A 6 2212Google Scholar
[25] Fan X P, Jiang J W, Li R, Guo L, Mi W B 2022 Chem. Phys. Lett. 805 139968
[26] Kresse G, Furthmüller J 1996 Comp. Mat. Sci. 54 11169Google Scholar
[27] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar
[28] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[29] Shi J Y, Ou Y, Max A M, Wang H Y, Li H, Zhang Y, Gu Y S, Zou M Q 2019 Comput. Mater. Sci. 160 301Google Scholar
[30] Guo R, Luan L J, Cao M Y, Zhang Y, Wei X, Fan J B, Ni L, Liu C, Yang Y, Liu J, Tian Y, Duan L 2023 Phys. E 149 115628
[31] Li R X, Tian X L, Zhu S C, Mao Q H, Ding J, Li H D 2022 Phys. E 144 115443
[32] Yang F, Zhuo Z G, Han J N, Cao X C, Tao Y, Zhang L, Liu W J, Zhu Z Y, Dai Y H 2021 Superlattice. Microst. 156 106935
[33] 赵婷婷, 姚曼, 王旭东 2023 材料研究与应用 17 205Google Scholar
Zhao T T, Yao M, Wang X D 2023 Mater. Res. Appl. 17 205Google Scholar
[34] Bader R F W 1991 Chem. Rev. 91 893Google Scholar
[35] 栾丽君, 何易, 王涛, Liu Z W 2021 70 166302Google Scholar
Luan L J, He Y, Wang T, Liu Z W 2021 Acta Phys. Sin. 70 166302Google Scholar
[36] Wang J Q, Cheng H, Wei D Q, Li Z H 2022 Chin. J. Cat. 43 2606Google Scholar
[37] Zhu Y K, Zhuang Y, Wang L L, Tang H, Meng X F, She X L 2022 Chin. J. Cat. 43 2558Google Scholar
[38] Zhao Z L, B J, Zhao L N, Wu H J, Xu S, Sun L, Li Z J, Zhang Z Q, Jing L Q 2022 Chin. J. Cat. 43 1331Google Scholar
[39] Wang J, Wang G H, Cheng B, Yu J G, Fan J J 2021 Chin. J. Catal. 42 56Google Scholar
[40] Luo J H, Lin Z X, Zhao Y, Jiang S J, Song S Q 2020 Chin. J. Catal. 41 130
[41] Ye J X, Liu J W, An Y K 2020 Appl. Surf. Sci. 501 144262Google Scholar
[42] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能 2022 71 097301Google Scholar
Liu C X, Pang G W, Pan D Q, Shi L Q, Zhang L L, Lei B C, Zhao X C, Huang Y N 2022 Acta Phys. Sin. 71 097301Google Scholar
[43] Navarro Yerga Rufino M, Alvarez Galván M Consuelo, del Valle F, Villoria de la Mano José A, Fierro José L G 2009 Chem. Sus. Chem. 2 471Google Scholar
[44] Wang Z, Zhang Y, Wei X, Guo T T, Fan J B, Ni L, Weng Y J, Zha Z D, Liu J, Tian Y, Li T, Duan L 2020 Phys. Chem. Chem. Phys. 22 9630Google Scholar
[45] Li X R, Dai Y, Ma Y D, Han S H, Huang B B 2014 Phys. Chem. 16 4230Google Scholar
[46] Bai K F, Cui Z, Li E L, Ding Y C, Zheng J S, Liu C, Zheng Y P 2020 Vacuum 180 109562Google Scholar
Catalog
Metrics
- Abstract views: 3230
- PDF Downloads: 113
- Cited By: 0