搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外延PbZr0.2Ti0.8O3薄膜负电容的应变调控

林翠 白刚 李卫 高存法

引用本文:
Citation:

外延PbZr0.2Ti0.8O3薄膜负电容的应变调控

林翠, 白刚, 李卫, 高存法

Strain tuning of negative capacitance in epitaxial PbZr0.2Ti0.8O3 thin films

Lin Cui, Bai Gang, Li Wei, Gao Cun-Fa
PDF
HTML
导出引用
  • 为了让摩尔定律能够延续下去, 降低功耗是很多研究者关注的问题, 铁电负电容效应的发现为其提供了一种解决方案. 应变工程作为调控铁电薄膜物理性能的有效手段已经被广泛研究. 但是应变对铁电负电容调控的相关机理并不清楚. 本文通过Landau-Khalatnikov方程模拟了应变场和温度场对PbZr0.2Ti0.8O3铁电薄膜负电容的影响. 研究表明, 瞬态负电容的产生伴随着极化的翻转, 在一定温度下压应变有助于铁电负电容的稳定, 而在张应变下铁电极化翻转较快, 负电容效应持续时间较短. 但是, 增加的压应变会导致对应的矫顽电压增大, 需要更大的外电压才能使极化翻转, 从而产生负电容. 此外, 在恒定的应变下, 温度越低, 负电容效应越显著. 本工作对未来负电容微纳器件的设计具有一定的指导意义.
    In order to continue Moore’s Law, the reducing of power consumption is concerned by many researchers, and the discovery of ferronegative negative capacitance effect (NCE) provides a solution. Strain engineering has been widely studied as an effective means to regulate the physical properties of ferroelectric thin films. But the relevant mechanism of strain to ferroelectric negative capacitance regulation is not clear. Recently, the experimental results have shown that it is possible to stabilize the transient NCE in resistance-ferroelectric networks. In this work, we use the Landau-Khalatnikov theory to study the microscopic domain evolution and the influence of strain and temperature on NCE in a ferroelectric film. It is shown that compressive strain enhances NCE while NCE becomes weaker under a tensile strain. However, a larger compressive strain will give rise to a higher coercive voltage that hinders the NCE from forming. In addition, under a certain strain, the NCE becomes stronger at lower temperature. This work provides the theoretical basis for designing the negative capacitance devices and scaling towards nanoscale dimensions in future.
      通信作者: 白刚, baigang@njupt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51602159)资助的课题
      Corresponding author: Bai Gang, baigang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51602159)
    [1]

    Moore G 1965 Electronics 38 114Google Scholar

    [2]

    Waldrop M 2016 Nature 530 144Google Scholar

    [3]

    Tu L, Wang X, Wang J, Meng X, Chu J 2018 Adv. Electron. Mater. 4 1800231Google Scholar

    [4]

    Zhirnov V, Cavin R 2008 Nat. Nanotechnol. 3 77Google Scholar

    [5]

    Salahuddin S, Datta S 2008 Nano Lett. 8 405Google Scholar

    [6]

    Meindl J, Chen Q, Davis J 2001 Science 293 2044Google Scholar

    [7]

    Khan A, Chatterjee K, Wang B, Drapcho S, Long Y, Serrao C, Bakaul S, Ramesh R, Salahuddin S 2015 Nat. Mater. 14 182Google Scholar

    [8]

    Khan A, Hoffmann M, Chatterjee K, Lu Z, Xu R, Serrao C, Smith S, Martin L, Hu C, Ramesh R, Salahuddin S 2017 Appl. Phys. Lett. 111 253501Google Scholar

    [9]

    Hoffmann M, Pesic M, Chatterjee K, Khan A I, Salahuddin S, Slesazeck S, Schroeder U, Mikolajick T 2016 Adv. Funct. Mater. 26 8643Google Scholar

    [10]

    Hoffmann M, Khan A, Serrao C, Lu Z, Salahuddin S, Pesic M, Slesazeck S, Schroeder U, Mikolajick T 2018 J. Appl. Phys. 123 184101Google Scholar

    [11]

    Zhou J, Han G, Li Q, Peng Y, Lu X, Zhang C, Zhang J, Sun Q, Zhang D, Hao Y 2016 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 3–7, 2016 p16651211

    [12]

    Arimoto Y, Ishiwara H 2004 MRS Bull. 29 823Google Scholar

    [13]

    Tanaka K, Kubota T, Sakabe Y 2002 Sens. Actuators, A 96 179Google Scholar

    [14]

    Hoshyarmanesh H, Ghodsi M, Kim M, Cho H, Park H 2019 Sensors 19 2805Google Scholar

    [15]

    Rath M, Varadarajan E, Premkumar S, Shinde S, Natarajan V, Rao R 2019 Ferroelectrics 551 17Google Scholar

    [16]

    Janolin P 2009 J. Mater. Sci. 44 5025Google Scholar

    [17]

    Choi K, Biegalski M, Li Y, Sharan A, Schubert J, Uecker R, Peiche P, Chen Y, Pan X, Gopalan V, Chen L, Schlom D, Eom C 2004 Science 306 1005Google Scholar

    [18]

    Sharma A, Ban Z, Alpay S 2004 J. Appl. Phys. 95 3618Google Scholar

    [19]

    Pertsev N, Zembilgotov A, Tagantsev A K 1998 Phys. Rev. Lett. 80 1988Google Scholar

    [20]

    Pertsev N, Zembilgotov A, Tagantsev A 1999 Ferroelectrics 223 79Google Scholar

    [21]

    Ban Z, Alpay S 2002 J. Appl. Phys. 91 9288Google Scholar

    [22]

    Ban Z, Alpay S 2003 J. Appl. Phys. 93 504Google Scholar

    [23]

    Pertsev N, Kukhar V, Kohlstedt H, Waser R 2003 Phys. Rev. B 67 054107Google Scholar

    [24]

    Guo R, You L, Zhou Y, Lim Z, Zou X, Chen L, Ramesh R, Wang J 2013 Nat. Commun. 4 1990Google Scholar

    [25]

    Chang S, Avci U, Nikonov D, Manipatruni S, Young I 2018 Phys. Rev. Appl. 9 014010Google Scholar

    [26]

    Hoffmann M, Fengler F, Herzig M, Mittmann T, Max B, Schroeder U, Negrea R, Lucian P, Slesazeck S, Mikolajick T 2019 Nature 565 464Google Scholar

    [27]

    Lo V 2003 J. Appl. Phys. 94 3353Google Scholar

    [28]

    Zhang W, Bhattacharya K 2005 Acta Mater. 53 185Google Scholar

    [29]

    Rabe K, Ahn C, Triscone J 2007 Physics of Ferroelectrics (Berlin Heidelberg: Springer-Verlag) pp366–368

    [30]

    Haun M, Zhuang Z, Furman E 1989 Ferroelectrics 99 45Google Scholar

    [31]

    Qiu Q, Alpay S, Nagarajan V 2010 J. Appl. Phys. 107 114105

    [32]

    Liu C, Wang J 2021 Acta Mater. 206 116607Google Scholar

    [33]

    Pertsev N, Contreras J, Kukhar V, Hermanns B, Kohlstedt H, Waser R 2003 Appl. Phys. Lett. 83 3356Google Scholar

  • 图 1  铁电负电容瞬态响应模型及其等效电路图

    Fig. 1.  Transient response model of ferroelectric negative capacitance and its equivalent circuit diagram.

    图 2  (a)在T = 300 K, Sm = –0.011, 外加脉冲$ {V_{\text{S}}} = 14\;{\text{V}} $$ {V_{\text{f}}} $与时间t的局部关系图; (b)—(f)不同时间段的铁电极化分布($ t = 0.545 $, $ 4.85 $, $ 11.0 $, $ 14.3 $, $16.5\;{\text{μ} }{\rm{ s}}$)

    Fig. 2.  (a) Local relationship diagram with time under applied pulse; (b)–(f) ferroelectric polarization distribution in different time periods ($ t = 0.545 $, $ 4.85 $, $ 11.0 $, $ 14.3 $, $16.5\;{\text{μ} }{\rm{ s}}$).

    图 3  恒定应变$ {S_{\text{m}}} = 0.011 $以及不同温度下, (a), (c), (e)外加电压$ {V_{\text{S}}} = 14\;{\text{V}} $时铁电材料PbZr0.2Ti0.8O3${V_{\text{f}}} \text{-} t$关系图、${i_{\rm R}} \text{-} t$关系图、${Q_{\text{f}}} \text{-} t$关系图; (b), (d), (f)外加电压$ {V_{\text{S}}} = 10\;{\text{V}} $时铁电材料PbZr0.2Ti0.8O3${V_{\text{f}}} \text{-} t$关系图、${i_{\rm R}} \text{-} t$关系图、${Q_{\text{f}}} \text{-} t$关系图

    Fig. 3.  Under constant strain $ {S_{\text{m}}} = 0.011 $ and different temperatures, (a), (c), (e) the ${V_{\text{f}}}\text{-} t$ relationship diagram, ${i_{\rm R}} \text{-} t$ relationship diagram and ${Q_{\text{f}}} \text{-} t$ relationship diagram of ferroelectric materials PbZr0.2Ti0.8O3 when the applied voltage $ {V_{\text{S}}} = 14\;{\text{V}} $, respectively; (b), (d), (f) the ${V_{\text{f}}} \text{-} t$ relationship diagram, ${i_{\rm R}} \text{-} t$ relationship diagram and ${Q_{\text{f}}} \text{-} t$ relationship diagram of ferroelectric materials PbZr0.2Ti0.8O3 when the applied voltage $ {V_{\text{S}}} = 10\;{\text{V}} $, respectively.

    图 4  恒定温度$ T = 300\;{\text{K}} $以及不同应变下, (a), (c), (e)外加电压$ {V_{\text{S}}} = 14\;{\text{V}} $时铁电材料PbZr0.2Ti0.8O3${V_{\text{f}}} \text{-} t$关系图、${i_{\rm R}} \text{-} t$关系图、${Q_{\text{f}}} \text{-} t$关系图; (b), (d), (f)外加电压$ {V_{\text{S}}} = 10\;{\text{V}} $时铁电材料PbZr0.2Ti0.8O3${V_{\text{f}}} \text{-} t$关系图、${i_{\rm R}} \text{-} t$关系图、${Q_{\text{f}}} \text{-} t$关系图

    Fig. 4.  Under constant temperature $ T = 300\;{\text{K}} $ and different strains, (a), (c), (e) the ${V_{\text{f}}} \text{-} t$ relationship diagram, ${i_{\rm R}} \text{-} t$ relationship diagram and ${Q_{\text{f}}} \text{-} t$ relationship diagram of ferroelectric materials PbZr0.2Ti0.8O3 when the applied voltage $ {V_S} = 14\;{\text{V}} $, respectively; (b), (d), (f) the ${V_{\text{f}}} \text{-} t$ relationship diagram, ${i_{\rm R}} \text{-} t$ relationship diagram and ${Q_{\text{f}}} \text{-} t$ relationship diagram of ferroelectric materials PbZr0.2Ti0.8O3 when the applied voltage $ {V_{\text{S}}} = 10\;{\text{V}} $, respectively.

    图 5  自由能U与极化P的关系图 (a)恒定应变$ {S_{\text{m}}} = 0.011 $, 不同温度下$U \text{-} P$图; (b)恒温$ T = 300\;{\text{K}} $, 不同应变下$U \text{-} P$

    Fig. 5.  Relationship between free energy U and polarization P: (a) $U\text{-} P$ diagram with constant strain $ {S_{\text{m}}} = 0.011 $ at different temperatures; (b)$U \text{-} P$ diagram with constant temperature $ T = 300\;{\text{K}} $ at different strains.

    表 1  PbZr0.2Ti0.8O3材料的相关系数(温度T的单位为K)

    Table 1.  Correlation coefficient of PbZr0.2Ti0.8O3 material (The unit of temperature T is K).

    CoefficientsPbZr0.2Ti0.8O3UnitsReference
    a13.44(T – 729.5)105 C–2·m2·N[29]
    a11–3.050107 C–4·m6·N[29]
    a1112.475108 C–6·m10·N[29]
    s118.210–12 m2/N[29]
    s12–2.610–12 m2/N[29]
    Q12–0.0245m4/C2[30]
    $ {t_{{\text{FE}}}} $60nm[7]
    A302${\text{μ}}{ {\text{m} }^2}$[7]
    R50${\rm{k } }\Omega$[7]
    k$ 1.26 \times {10^{ - 7}} $$ {{\text{m}}^3}/{\text{F}} $
    ${\rho{'} }$70${\rm{k } }\Omega$
    $ \Delta x $$ 150 $$ {\text{nm}} $
    $ \Delta y $$ 150 $$ {\text{nm}} $
    $ {N_x} $200
    $ {N_y} $200
    $ \Delta t $$ 5 $$ {\text{ns}} $
    下载: 导出CSV
    Baidu
  • [1]

    Moore G 1965 Electronics 38 114Google Scholar

    [2]

    Waldrop M 2016 Nature 530 144Google Scholar

    [3]

    Tu L, Wang X, Wang J, Meng X, Chu J 2018 Adv. Electron. Mater. 4 1800231Google Scholar

    [4]

    Zhirnov V, Cavin R 2008 Nat. Nanotechnol. 3 77Google Scholar

    [5]

    Salahuddin S, Datta S 2008 Nano Lett. 8 405Google Scholar

    [6]

    Meindl J, Chen Q, Davis J 2001 Science 293 2044Google Scholar

    [7]

    Khan A, Chatterjee K, Wang B, Drapcho S, Long Y, Serrao C, Bakaul S, Ramesh R, Salahuddin S 2015 Nat. Mater. 14 182Google Scholar

    [8]

    Khan A, Hoffmann M, Chatterjee K, Lu Z, Xu R, Serrao C, Smith S, Martin L, Hu C, Ramesh R, Salahuddin S 2017 Appl. Phys. Lett. 111 253501Google Scholar

    [9]

    Hoffmann M, Pesic M, Chatterjee K, Khan A I, Salahuddin S, Slesazeck S, Schroeder U, Mikolajick T 2016 Adv. Funct. Mater. 26 8643Google Scholar

    [10]

    Hoffmann M, Khan A, Serrao C, Lu Z, Salahuddin S, Pesic M, Slesazeck S, Schroeder U, Mikolajick T 2018 J. Appl. Phys. 123 184101Google Scholar

    [11]

    Zhou J, Han G, Li Q, Peng Y, Lu X, Zhang C, Zhang J, Sun Q, Zhang D, Hao Y 2016 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 3–7, 2016 p16651211

    [12]

    Arimoto Y, Ishiwara H 2004 MRS Bull. 29 823Google Scholar

    [13]

    Tanaka K, Kubota T, Sakabe Y 2002 Sens. Actuators, A 96 179Google Scholar

    [14]

    Hoshyarmanesh H, Ghodsi M, Kim M, Cho H, Park H 2019 Sensors 19 2805Google Scholar

    [15]

    Rath M, Varadarajan E, Premkumar S, Shinde S, Natarajan V, Rao R 2019 Ferroelectrics 551 17Google Scholar

    [16]

    Janolin P 2009 J. Mater. Sci. 44 5025Google Scholar

    [17]

    Choi K, Biegalski M, Li Y, Sharan A, Schubert J, Uecker R, Peiche P, Chen Y, Pan X, Gopalan V, Chen L, Schlom D, Eom C 2004 Science 306 1005Google Scholar

    [18]

    Sharma A, Ban Z, Alpay S 2004 J. Appl. Phys. 95 3618Google Scholar

    [19]

    Pertsev N, Zembilgotov A, Tagantsev A K 1998 Phys. Rev. Lett. 80 1988Google Scholar

    [20]

    Pertsev N, Zembilgotov A, Tagantsev A 1999 Ferroelectrics 223 79Google Scholar

    [21]

    Ban Z, Alpay S 2002 J. Appl. Phys. 91 9288Google Scholar

    [22]

    Ban Z, Alpay S 2003 J. Appl. Phys. 93 504Google Scholar

    [23]

    Pertsev N, Kukhar V, Kohlstedt H, Waser R 2003 Phys. Rev. B 67 054107Google Scholar

    [24]

    Guo R, You L, Zhou Y, Lim Z, Zou X, Chen L, Ramesh R, Wang J 2013 Nat. Commun. 4 1990Google Scholar

    [25]

    Chang S, Avci U, Nikonov D, Manipatruni S, Young I 2018 Phys. Rev. Appl. 9 014010Google Scholar

    [26]

    Hoffmann M, Fengler F, Herzig M, Mittmann T, Max B, Schroeder U, Negrea R, Lucian P, Slesazeck S, Mikolajick T 2019 Nature 565 464Google Scholar

    [27]

    Lo V 2003 J. Appl. Phys. 94 3353Google Scholar

    [28]

    Zhang W, Bhattacharya K 2005 Acta Mater. 53 185Google Scholar

    [29]

    Rabe K, Ahn C, Triscone J 2007 Physics of Ferroelectrics (Berlin Heidelberg: Springer-Verlag) pp366–368

    [30]

    Haun M, Zhuang Z, Furman E 1989 Ferroelectrics 99 45Google Scholar

    [31]

    Qiu Q, Alpay S, Nagarajan V 2010 J. Appl. Phys. 107 114105

    [32]

    Liu C, Wang J 2021 Acta Mater. 206 116607Google Scholar

    [33]

    Pertsev N, Contreras J, Kukhar V, Hermanns B, Kohlstedt H, Waser R 2003 Appl. Phys. Lett. 83 3356Google Scholar

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能.  , 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 纪婷伟, 白刚. 双轴错配应变对铁电双栅负电容晶体管性能的影响.  , 2023, 72(6): 067701. doi: 10.7498/aps.72.20222190
    [3] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展.  , 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [4] 陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华. 铁电负电容场效应晶体管研究进展.  , 2020, 69(13): 137701. doi: 10.7498/aps.69.20200354
    [5] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [6] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构.  , 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [7] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者.  , 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [8] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应.  , 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [9] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能.  , 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [10] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能.  , 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [11] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响.  , 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [12] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展.  , 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [13] 王静, 冯露, 郝毅, 赵洋, 陈振飞. 异质外延生长中应变对圆形岛形貌稳定性的影响.  , 2013, 62(23): 238102. doi: 10.7498/aps.62.238102
    [14] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响.  , 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [15] 王磊, 杨成韬, 解群眺, 叶井红. 双层纳米磁电薄膜模型及分析.  , 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [16] 陈学锋, 李华梅, 李东杰, 曹 菲, 董显林. 脉冲电容器用细电滞回线铁电陶瓷材料的研究.  , 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [17] 黄文波, 曾文进, 王 藜, 彭俊彪. 聚合物发光二极管中的负电容效应.  , 2008, 57(9): 5983-5988. doi: 10.7498/aps.57.5983
    [18] 王龙海, 于 军, 刘 锋, 郑朝丹, 李 佳, 王耘波, 高峻雄, 王志红, 曾慧中, 赵素玲. PT/PZT/PT铁电薄膜的铁电畴和畴壁.  , 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
    [19] 徐国成, 潘 玲, 关庆丰, 邹广田. 非晶钛酸铋的晶化过程.  , 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [20] 王春雷, 钟维烈, 张沛霖. 有电畴的铁电薄膜中的相变.  , 1993, 42(10): 1703-1706. doi: 10.7498/aps.42.1703
计量
  • 文章访问数:  4031
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 修回日期:  2021-05-19
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回
Baidu
map