Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strain control of two-dimensional ferroelectric In2Se3/InSe vertical heterojunction energy band

Li Yong-Ning Xie Yi-Qun Wang Yin

Citation:

Strain control of two-dimensional ferroelectric In2Se3/InSe vertical heterojunction energy band

Li Yong-Ning, Xie Yi-Qun, Wang Yin
PDF
HTML
Get Citation
  • In recent years, two-dimensional ferroelectric heterojunctions have shown potential applications in the fields of high-density storage and optoelectronic devices. The development of novel two-dimensional ferroelectric heterojunctions is an important current research direction. In this work, first-principles calculations are used to study the band structure and stress control of In2Se3/InSe vertical heterojunction composed of two-dimensional ferroelectric material α-In2Se3 and monolayer InSe. The calculations show that the In2Se3/InSe heterojunction is an indirect band gap semiconductor with type-II band matching. When the polarization direction of In2Se3 is perpendicular to the surface facing outward, the band gap is 0.50 eV, and the top and bottom of the valence band originate from InSe and In2Se3 respectively; when the polarization direction of In2Se3 points inward the plane, the band gap decreases by 0.04 eV, and the sources of the top of the valence band and the bottom of the conduction band are interchanged. Under in-plane stretching, the greater the degree of stretching, the smaller the band gap is. After a certain threshold is exceeded, the heterojunction changes from a semiconductor into a conductor, which can also change the heterojunction with an indirect band gap into that with a direct band gap. The research results of this work show that changing the polarization direction and applying stress is an effective way to control the two-dimensional In2Se3/InSe ferroelectric heterojunction, which can provide a theoretical reference for designing the relevant ferroelectric devices.
      Corresponding author: Wang Yin, yinwang@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774217, 11804216, 51871156)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Lu W, Nan H, Hong J, Chen Y, Zhu C, Liang Z, Ma X, Ni Z, Jin C, Zhang Z 2014 Nano Res. 7 853Google Scholar

    [3]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 183

    [4]

    Guo J, Chen X, Jin S, Zhang M, Liang C 2015 Catal. Today 246 165Google Scholar

    [5]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nat. Mater. 11 764Google Scholar

    [6]

    Bertolazzi S, Krasnozhon D, Kis A 2013 ACS Nano 7 3246Google Scholar

    [7]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J, Sinclair R, Wu J 2014 Nano Lett. 14 3185Google Scholar

    [8]

    Shim G W, Yoo K, Seo S B, Shin J, Jung D Y, Kang I S, Ahn C W, Cho B J, Choi S Y 2014 Acs Nano 8 6655Google Scholar

    [9]

    Zhao Z, Xu K, Ryu H, Zhu W 2020 ACS Appl. Mater. Interf. 12 51820Google Scholar

    [10]

    Ayadi T, Debbichi L, Badawi M, Said M, Kim H, Rocca D, Lebègue S 2019 Physica E: Low-dimens. Syst. Nanostruct. 114 113582Google Scholar

    [11]

    Li Y, Chen C, Li W, Mao X, Liu H, Xiang J, Nie A, Liu Z, Zhu W, Zeng H 2020 Adv. Electron. Mater. 6 2000061Google Scholar

    [12]

    Zheng Z, Yao J, Yang G 2017 ACS Appl. Mater. Interf. 9 7288Google Scholar

    [13]

    Ayadi T, Debbichi L, Badawi M, Said M, Rocca D, Lebègue S 2021 Appl. Surf. Sci. 538 148066Google Scholar

    [14]

    Zhou B, Jiang K, Shang L, Zhang J, Li Y, Zhu L, Gong S J, Hu Z, Chu J 2020 J. Mater. Chem. C 8 11160Google Scholar

    [15]

    Dhakal K P, Roy S, Jang H, Chen X, Yun W S, Kim H, Lee J, Kim J, Ahn J H 2017 Chem. Mater. 29 5124Google Scholar

    [16]

    Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592Google Scholar

    [17]

    Guo Y, Li B, Huang Y, Du S, Sun C, Luo H, Liu B, Zhou X, Yang J, Li J, Gu C 2020 Nano Res. 13 2072Google Scholar

    [18]

    Liu X, Song C, Wu Z, Wang J, Pan J, Li C 2020 J. Phys. D: Appl. Phys. 53 385002Google Scholar

    [19]

    Rahimi K 2021 Mater. Lett. 282 128680Google Scholar

    [20]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [21]

    Ding Y M, Shi J J, Xia C, Zhang M, Du J, Huang P, Wu M, Wang H, Cen Y L, Pan S H 2017 Nanoscale 9 14682Google Scholar

    [22]

    Hu T, Zhou J, Dong J 2017 Phys. Chem. Chem. Phys. 19 21722Google Scholar

    [23]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [24]

    Zhou B, Gong SJ, Jiang K, Xu L, Zhu L, Shang L, Li Y, Hu Z, Chu J 2019 J. Phys.: Condens. Matter. 32 055703

    [25]

    Bultinck P 2007 Faraday Discuss. 135 347Google Scholar

    [26]

    Catalan G, Lubk A, Vlooswijk A H G, et al. 2011 Nat. Mater. 10 963Google Scholar

    [27]

    Cao Y, Chen L Q, Kalinin S V 2017 Appl. Phys. Lett. 110 202903Google Scholar

  • 图 1  (a) InSe/In2Se3异质结的3种堆叠方式, 黑色虚线箭头标注了异质结不同层的In原子的位置关系; (b) 3种结构在不同层间距下的能量; (c)图1(b)中黑色虚框部分的局部放大图

    Figure 1.  (a) Three stacking methods of InSe/In2Se3heterojunctions, where black dashed arrows mark the positional relationship of In atoms in different layers of the heterojunction; (b) formation energy of the three structures at different layer spacings; (c) a partial enlarged view of the black dashed part in Fig.1 b).

    图 2  (a) In2Se3/InSe (I)和In2Se3/InSe (II)的晶格结构, 黑色虚框表示晶格, 红色箭头表示异质结中In2Se3的自发极化方向; (b) In2Se3/InSe (I)和In2Se3/InSe (II)的结合能对比

    Figure 2.  (a) Lattice structure of In2Se3/InSe (I) and In2Se3/InSe (II), where the black dashed frame represents the crystal lattice, and the red arrow represents the spontaneous polarization direction of In2Se3; (b) binding energy comparison of In2Se3/InSe (I) and In2Se3/InSe (II).

    图 3  (a) In2Se3/InSe (I)的能带结构及(b)态密度; (c) In2Se3/InSe (II)的能带结构及(d)态密度. 能带图中红色和蓝色表示InSe及In2Se3对能带的贡献, 黑色箭头表示带隙, 由CBM指向VBM;(e)In2Se3/InSe (I)和In2Se3/InSe (II) CBM和VBM所在能带的电荷空间分布

    Figure 3.  (a) Band structure of In2Se3/InSe (I) and (b) density of states; (c) band structure of In2Se3/InSe (II) and (d) density of states, where the red and blue in the energy band diagram indicate the contribution of InSe and In2Se3 to the energy band, and the black arrow indicates the band gap, pointing from CBM to VBM; (e) decomposed charge densities of CBM and VBM for In2Se3/InSe (I) and In2Se3/InSe (II).

    图 4  (a) In2Se3/InSe (I) 和 (b) In2Se3/InSe (II)沿Z方向的平面平均差分电荷密度. 图中黄色和青色包络面分别表示电子的聚集和耗尽区

    Figure 4.  (a) Plane-averaged charge density difference forIn2Se3/InSe (I) and (b) In2Se3/InSe (II) at equilibrium distance along the Z direction, where the yellow and cyan envelope areas representelectron accumulation and depletion, respectively.

    图 5  双轴应变(左)和单轴应变(右)的晶胞选取以及应变施加方向.

    Figure 5.  Unit cell selection and strain application direction of biaxial strain (left) and uniaxial strain (right).

    图 6  (a) 不同双轴应变下In2Se3/InSe (I)的带隙; (b)不同双轴应变下In2Se3/InSe (II)的带隙

    Figure 6.  (a) Band gap of In2Se3/InSe (I) under biaxial strain; (b) band gap of In2Se3/InSe (II) under biaxial strain.

    图 7  (a)−(d)4%、8%、–4%和–8%双轴应变下In2Se3/InSe (I)的投影能带结构; (e)−(h) 2%、8%、–2%和–8%双轴应变下In2Se3/InSe (II)的投影能带结构. 能带图中红色部分表示InSe对能带的贡献, 蓝色部分表示In2Se3对能带的贡献

    Figure 7.  (a)−(d) The projected band structure of In2Se3/InSe (I) under 4%, 8%, –4% and –8% biaxial strain; (e)−(h) Projected band structure of In2Se3/InSe (II) under 2%, 8%, –2% and –8% biaxial strain. The red part of the energy band indicates the contribution of InSe, the blue part indicates the contribution of In2Se3.

    图 8  –4%和–8%双轴应变下In2Se3/InSe(I)CBM和VBM所在能带的电荷空间分布以及–2%及–8%双轴应变下In2Se3/InSe (II)CBM和VBM所在能带的电荷空间分布

    Figure 8.  Decomposed charge densities of CBM and VBM for In2Se3/InSe (I) under –4% and –8% biaxial strain and thedecomposed charge densities of CBM and VBM for In2Se3/InSe (II) under –2% and –8% biaxial strain.

    图 9  (a) x方向与y方向单轴应变和双轴应变下In2Se3/InSe (I)的带隙; (b) x方向与y方向单轴应变和双轴应变下In2Se3/InSe (II)的带隙

    Figure 9.  (a) Band gap of In2Se3/InSe (I) under x-axis strain, y-axis strain and biaxial strain; (b) band gap of In2Se3/InSe (II) under x-axis strain, y-axis strain and biaxial strain.

    图 10  (a)−(d)xy方向10%、–10%应变下In2Se3/InSe (I)的投影能带结构; (e)−(h)xy方向10%、–4%应变下In2Se3/InSe (II)的投影能带结构. 能带图中红色部分表示InSe对能带的贡献, 蓝色部分表示In2Se3对能带的贡献

    Figure 10.  (a)−(d) Projected band structure of In2Se3/InSe (I) under 10%, –10% x-axis strain and 10%, –10% y-axis strain; (e)−(h) projected band structure of In2Se3/InSe (II) under 10%, –4% x-axis strain and 10%, –4% y-axis strain. The red part of the energy band indicates the contribution of InSe, the blue part indicates the contribution of In2Se3.

    表 1  双轴应变下In2Se3/InSe (II)及In2Se3/InSe (I)的带隙.

    Table 1.  Band gap of In2Se3/InSe (I) and In2Se3/ InSe(II) under biaxial strain.

    μ/%In2Se3/InSe (I) In2Se3/InSe (II)
    Gap/eVCharacterGap/eV Character
    –10 0.28 direct 0.08 direct
    –8 0.60 direct 0.34 direct
    –6 0.84 direct 0.50 indirect
    –4 0.70 indirect 0.55 indirect
    –2 0.56 indirect 0.53 indirect
    0 0.50 indirect 0.46 indirect
    2 0.21 indirect 0.37 indirect
    4 0.07 indirect 0.20 indirect
    6 metallic 0.02 indirect
    8 metallic metallic
    10 metallic metallic
    DownLoad: CSV
    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Lu W, Nan H, Hong J, Chen Y, Zhu C, Liang Z, Ma X, Ni Z, Jin C, Zhang Z 2014 Nano Res. 7 853Google Scholar

    [3]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 183

    [4]

    Guo J, Chen X, Jin S, Zhang M, Liang C 2015 Catal. Today 246 165Google Scholar

    [5]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nat. Mater. 11 764Google Scholar

    [6]

    Bertolazzi S, Krasnozhon D, Kis A 2013 ACS Nano 7 3246Google Scholar

    [7]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J, Sinclair R, Wu J 2014 Nano Lett. 14 3185Google Scholar

    [8]

    Shim G W, Yoo K, Seo S B, Shin J, Jung D Y, Kang I S, Ahn C W, Cho B J, Choi S Y 2014 Acs Nano 8 6655Google Scholar

    [9]

    Zhao Z, Xu K, Ryu H, Zhu W 2020 ACS Appl. Mater. Interf. 12 51820Google Scholar

    [10]

    Ayadi T, Debbichi L, Badawi M, Said M, Kim H, Rocca D, Lebègue S 2019 Physica E: Low-dimens. Syst. Nanostruct. 114 113582Google Scholar

    [11]

    Li Y, Chen C, Li W, Mao X, Liu H, Xiang J, Nie A, Liu Z, Zhu W, Zeng H 2020 Adv. Electron. Mater. 6 2000061Google Scholar

    [12]

    Zheng Z, Yao J, Yang G 2017 ACS Appl. Mater. Interf. 9 7288Google Scholar

    [13]

    Ayadi T, Debbichi L, Badawi M, Said M, Rocca D, Lebègue S 2021 Appl. Surf. Sci. 538 148066Google Scholar

    [14]

    Zhou B, Jiang K, Shang L, Zhang J, Li Y, Zhu L, Gong S J, Hu Z, Chu J 2020 J. Mater. Chem. C 8 11160Google Scholar

    [15]

    Dhakal K P, Roy S, Jang H, Chen X, Yun W S, Kim H, Lee J, Kim J, Ahn J H 2017 Chem. Mater. 29 5124Google Scholar

    [16]

    Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592Google Scholar

    [17]

    Guo Y, Li B, Huang Y, Du S, Sun C, Luo H, Liu B, Zhou X, Yang J, Li J, Gu C 2020 Nano Res. 13 2072Google Scholar

    [18]

    Liu X, Song C, Wu Z, Wang J, Pan J, Li C 2020 J. Phys. D: Appl. Phys. 53 385002Google Scholar

    [19]

    Rahimi K 2021 Mater. Lett. 282 128680Google Scholar

    [20]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [21]

    Ding Y M, Shi J J, Xia C, Zhang M, Du J, Huang P, Wu M, Wang H, Cen Y L, Pan S H 2017 Nanoscale 9 14682Google Scholar

    [22]

    Hu T, Zhou J, Dong J 2017 Phys. Chem. Chem. Phys. 19 21722Google Scholar

    [23]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [24]

    Zhou B, Gong SJ, Jiang K, Xu L, Zhu L, Shang L, Li Y, Hu Z, Chu J 2019 J. Phys.: Condens. Matter. 32 055703

    [25]

    Bultinck P 2007 Faraday Discuss. 135 347Google Scholar

    [26]

    Catalan G, Lubk A, Vlooswijk A H G, et al. 2011 Nat. Mater. 10 963Google Scholar

    [27]

    Cao Y, Chen L Q, Kalinin S V 2017 Appl. Phys. Lett. 110 202903Google Scholar

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Bai Wen-Qing, Yang Jiang-Tao, Yang Cui-Hong, Chen Yun-Yun. Interband optical conductivity in electromagnetic field modulated strained black phosphorene. Acta Physica Sinica, 2024, 73(13): 137803. doi: 10.7498/aps.73.20240445
    [3] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [4] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [5] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [6] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [7] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [8] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [9] Liang Jin-Ling, Zhang Yun, Qiu Xiao-Yan, Wu Sheng-Yu, Luo Ya. First-principles study of Fe:Mg:LiTaO3 crystals. Acta Physica Sinica, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [10] Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang. First-principles study of five isomers of two-dimensional GeSe under in-plane strain. Acta Physica Sinica, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [11] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [12] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [13] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [14] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [15] Zhang Hai-Bo, Wang Zhi-Guo, Zu Xiao-Tao, Yang Ding-Yu, Zhu Xing-Hua. First principles study of electronic properties of carbon/silicon carbide nanotube heterojunction. Acta Physica Sinica, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [16] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Liu Shao-Jun, Cui Xin-Lin, Chen Xiang-Rong. The mechanism of structure phase transition from α Fe to ε Fe under uniaxial strain: First-principles calculations. Acta Physica Sinica, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [17] Sun Yuan, Huang Zu-Fei, Fan Hou-Gang, Ming Xing, Wang Chun-Zhong, Chen Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [18] Sun Yuan, Ming Xing, Meng Xing, Sun Zheng-Hao, Xiang Peng, Lan Min, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [19] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [20] Song Jian-Jun, Zhang He-Ming, Dai Xian-Ying, Hu Hui-Yong, Xuan Rong-Xi. Band structure of strained Si/(111)Si1-xGex: a first principles investigation. Acta Physica Sinica, 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
Metrics
  • Abstract views:  10382
  • PDF Downloads:  653
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2021
  • Accepted Date:  22 July 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回
Baidu
map