Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dislocation reduction mechanism os GaN films on vicinal sapphire substrates

Xu Shuang Xu Sheng-Rui Wang Xin-Hao Lu Hao Liu Xu Yun Bo-Xiang Zhang Ya-Chao Zhang Tao Zhang Jin-Cheng Hao Yue

Citation:

Dislocation reduction mechanism os GaN films on vicinal sapphire substrates

Xu Shuang, Xu Sheng-Rui, Wang Xin-Hao, Lu Hao, Liu Xu, Yun Bo-Xiang, Zhang Ya-Chao, Zhang Tao, Zhang Jin-Cheng, Hao Yue
PDF
HTML
Get Citation
  • GaN materials are widely used in optoelectronic devices, high-power devices and high-frequency microwave devices because of their excellent characteristics, such as wide frequency band, high breakdown electric field, high thermal conductivity, and direct band gap. Owing to the large lattice mismatch and thermal mismatch brought by the heterogeneous epitaxy of GaN material, the GaN epitaxial layer will produce a great many dislocations in the growth process, resulting in the poor crystal quality of GaN material and the difficulty in further improving the device performance. Therefore, researchers have proposed the use of vicinal substrate to reduce the dislocation density of GaN material, but the dislocation annihilation mechanism in GaN film on vicinal substrate has not been sufficiently studied. Therefore, in this paper, GaN thin films are grown on vicinal sapphire substrates at different angles by using metal organic chemical vapor deposition technique. Atomic force microscope, high resolution X-ray diffractometer, photoluminescence testing, and transmission electron microscopy are used to analyze in detail the effects of vicinal substrates on GaN materials. The use of vicinal substrates can significantly reduce the dislocation density of GaN materials, but lead to degradation of their surface morphology morphologies. And the larger the substrate vicinal angle, the lower the dislocation density of the sample is. The dislocation density of the sample with a 5º bevel cut on the substrate is reduced by about one-third compared to that of the sample with a flat substrate. The special dislocation termination on the mitered substrate is observed by transmission electron microscopy, which is one of the main reasons for the reducing the dislocation density on the mitered substrate. The step merging on the vicinal sapphire substrate surface leads to both transverse growth and longitudinal growth of GaN in the growth process. The transverse growth region blocks the dislocations, resulting in an abrupt interruption of the dislocations during propagation, which in turn reduces the dislocation density.Based on the above phenomena, a model of GaN growth on vicinal substrate is proposed to explain the reason why the quality of GaN crystal can be improved by vicinal substrate.
      Corresponding author: Xu Sheng-Rui, srxu@xidian.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3604400), the National Natural Science Foundation of China (Grant Nos. 62074120, 62134006), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. JB211108).
    [1]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363Google Scholar

    [2]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar

    [3]

    郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 66 167301Google Scholar

    Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301Google Scholar

    [4]

    武鹏, 张涛, 张进成, 郝跃 2022 71 158503Google Scholar

    Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar

    [5]

    Li G Q, Wang W L, Yang W J, Lin Y H, Wang H Y, Lin Z T, Zhou S Z 2016 Rep. Prog. Phys. 79 056501Google Scholar

    [6]

    Jena D, Mishra U K 2002 Appl. Phys. Lett. 80 64Google Scholar

    [7]

    刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃 2022 71 057301Google Scholar

    Liu C, Li M, Wen Z, Gu Z Y, Yang M C, Liu W H, Han C Y, Zhang Y, Geng L, Hao Y 2022 Acta Phys. Sin. 71 057301Google Scholar

    [8]

    Zhou S J, Zhao X Y, Du P, Zhang Z Q, Liu X, Liu S, Guo A 2022 Nanoscale 14 4887Google Scholar

    [9]

    Kung P, Walker D, Hamilton N, Diaz J, Razeghi M 1999 Appl. Phys. Lett. 74 570Google Scholar

    [10]

    Zhao Y, Xu S R, Feng L S, Peng R S, Fan X M, Du J J, Su H K, Zhang J C, Hao Y 2022 Mater. Sci. Semicond. Process. 143 106535Google Scholar

    [11]

    Ni Y Q, He Z Y, Zhou D Q, Yao Y, Yang F, Zhou G L, Shen Z, Zhong J, Zhen Y, Zhang B J, Liu Y 2015 Superlattices Microstruct. 83 811Google Scholar

    [12]

    Fatemi M, Wickenden A E, Koleske D D, Twigg M E, Freitas J A, Henry R L, Gorman R J 1998 Appl. Phys. Lett. 73 608Google Scholar

    [13]

    Shen X Q, Shimizu M, Okumura H 2003 Jpn. J. Appl. Phys. 42 L1293Google Scholar

    [14]

    Chang P C, Yu C L 2008 J. Electrochem. Soc. 155 H369Google Scholar

    [15]

    Zhang H C, Sun Y, Song K, et al. 2022 Appl. Phys. Lett. 119 072104Google Scholar

    [16]

    Fan X M, Bai J C, Xu S R, Zhang J C, Li P X, Peng R S, Zhao Y, Du J J, Shi X F, Hao Y 2018 Thin Solid Films 663 44Google Scholar

    [17]

    Shen X Q, Matsuhata H, Okumura H 2005 Appl. Phys. Lett. 86 021912Google Scholar

    [18]

    林志宇, 张进成, 许晟瑞, 吕玲, 刘子扬, 马俊彩, 薛晓咏, 薛军帅, 郝跃 2012 61 186103Google Scholar

    Lin Z Y, Zhang J C, Xu S R, Lü L, Liu Z Y, Ma J C, Xue X Y, Xue J S, Hao Y 2012 Acta Phys. Sin. 61 186103Google Scholar

    [19]

    Chuang R W, Yu C L, Chang S J, Chang P C, Lin J C, Kuan T M 2007 J. Cryst. Growth 308 252Google Scholar

    [20]

    Xu Z H, Zhang J C, Zhang Z F, Zhu Q W, Duan H T, Hao Y 2009 Chin. Phys. B 18 5457Google Scholar

    [21]

    Sun H D, Mitra S, Subedi R C, et al. 2019 Adv. Funct. Mater. 29 1905445Google Scholar

    [22]

    Zhang H C, Sun Y, Song K, Xing C, Yang L, Wang D H, Yu H B, Xiang X Q, Gao N, Xu G W, Sun H D, Long S B 2021 Appl. Phys. Lett. 119 072104Google Scholar

    [23]

    Shen X Q, Furuta K, Nakamura N, Matsuhata H, Shimizu M, Okumura H 2007 J. Cryst. Growth 301 404Google Scholar

    [24]

    Chierchia R, Bottcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918Google Scholar

    [25]

    郝跃, 张金风, 张进成 2013 氮化物宽禁带半导体材料与电子器件(北京: 科学出版社) 第25页

    Hao Y, Zhang J F, Zhang J C 2013 Nitride Wide Bandgap Semiconductor Materials and Electronic Devices (Beijing: Science Press) p25

    [26]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654Google Scholar

    [27]

    Yu H B, Chen H, Li D S, Wang J, Xing Z G, Zheng X H, Huang Q, Zhou J M 2004 J. Cryst. Growth 266 455Google Scholar

    [28]

    Lee J H, Lee D Y, Oh B W, Lee J H 2010 IEEE Trans. Electron Devices 57 157Google Scholar

    [29]

    Kong B H, Sun Q, Han J, Lee I H, Cho H K 2012 Appl. Surf. Sci. 258 2522Google Scholar

    [30]

    Pakula K, Baranowski J M, Borysiuk J 2007 Cryst. Res. Technol. 42 1176Google Scholar

    [31]

    Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850Google Scholar

  • 图 1  四个样品的AFM测试图 (a) 样品A, RMS = 0.371 nm; (b) 样品B, RMS = 18.3 nm; (c) 样品C, RMS = 54.1 nm; (d) 样品D, RMS = 56.9 nm

    Figure 1.  AFM images of four samples: (a) Sample A, RMS = 0.371 nm; (b) sample B, RMS = 18.3 nm; (c) sample C, RMS = 54.1 nm; (d) sample D, RMS = 56.9 nm.

    图 2  样品A, B, C, D的(002)面(a)和(102)面(b)的XRD摇摆曲线图

    Figure 2.  XRD rocking curves of (002) (a) and (102) (b) of samples A, B, C and D.

    图 3  四个样品的室温下PL图(a)和局部放大图(b)

    Figure 3.  PL images (a) and local enlarged images (b) of four samples at room temperature.

    图 4  样品D的TEM测试图 (a) g = [0002]; (b) $ g = $$ [ {11\bar 2 0} ] $

    Figure 4.  TEM images of sample D: (a) g = [0002]; (b) $ g= $$ [ {11\bar 2 0} ] $.

    图 5  斜切衬底上GaN的生长过程及位错传播过程

    Figure 5.  Growth process and dislocation spread of GaN on vicinal substrates.

    图 6  平面衬底上GaN的生长过程及位错传播过程

    Figure 6.  Growth process and dislocation spread of GaN on planar substrates.

    表 1  样品A, B, C, D的RC曲线FWHM值和位错密度

    Table 1.  FWHM values and dislocation density of RC curves of samples A, B, C and D.

    样品 (002)面
    FWHM值/('')
    (102)面
    FWHM值/('')
    螺位错
    密度/(107 cm–2)
    刃位错
    密度/(108 cm–2)
    总位错
    密度/(108 cm–2)
    Sample A 235 282 11.0 4.20 5.30
    Sample B 221 274 9.76 3.97 4.94
    Sample C 196 251 7.69 3.33 4.11
    Sample D 165 240 5.47 3.07 3.62
    DownLoad: CSV
    Baidu
  • [1]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363Google Scholar

    [2]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar

    [3]

    郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 66 167301Google Scholar

    Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301Google Scholar

    [4]

    武鹏, 张涛, 张进成, 郝跃 2022 71 158503Google Scholar

    Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar

    [5]

    Li G Q, Wang W L, Yang W J, Lin Y H, Wang H Y, Lin Z T, Zhou S Z 2016 Rep. Prog. Phys. 79 056501Google Scholar

    [6]

    Jena D, Mishra U K 2002 Appl. Phys. Lett. 80 64Google Scholar

    [7]

    刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃 2022 71 057301Google Scholar

    Liu C, Li M, Wen Z, Gu Z Y, Yang M C, Liu W H, Han C Y, Zhang Y, Geng L, Hao Y 2022 Acta Phys. Sin. 71 057301Google Scholar

    [8]

    Zhou S J, Zhao X Y, Du P, Zhang Z Q, Liu X, Liu S, Guo A 2022 Nanoscale 14 4887Google Scholar

    [9]

    Kung P, Walker D, Hamilton N, Diaz J, Razeghi M 1999 Appl. Phys. Lett. 74 570Google Scholar

    [10]

    Zhao Y, Xu S R, Feng L S, Peng R S, Fan X M, Du J J, Su H K, Zhang J C, Hao Y 2022 Mater. Sci. Semicond. Process. 143 106535Google Scholar

    [11]

    Ni Y Q, He Z Y, Zhou D Q, Yao Y, Yang F, Zhou G L, Shen Z, Zhong J, Zhen Y, Zhang B J, Liu Y 2015 Superlattices Microstruct. 83 811Google Scholar

    [12]

    Fatemi M, Wickenden A E, Koleske D D, Twigg M E, Freitas J A, Henry R L, Gorman R J 1998 Appl. Phys. Lett. 73 608Google Scholar

    [13]

    Shen X Q, Shimizu M, Okumura H 2003 Jpn. J. Appl. Phys. 42 L1293Google Scholar

    [14]

    Chang P C, Yu C L 2008 J. Electrochem. Soc. 155 H369Google Scholar

    [15]

    Zhang H C, Sun Y, Song K, et al. 2022 Appl. Phys. Lett. 119 072104Google Scholar

    [16]

    Fan X M, Bai J C, Xu S R, Zhang J C, Li P X, Peng R S, Zhao Y, Du J J, Shi X F, Hao Y 2018 Thin Solid Films 663 44Google Scholar

    [17]

    Shen X Q, Matsuhata H, Okumura H 2005 Appl. Phys. Lett. 86 021912Google Scholar

    [18]

    林志宇, 张进成, 许晟瑞, 吕玲, 刘子扬, 马俊彩, 薛晓咏, 薛军帅, 郝跃 2012 61 186103Google Scholar

    Lin Z Y, Zhang J C, Xu S R, Lü L, Liu Z Y, Ma J C, Xue X Y, Xue J S, Hao Y 2012 Acta Phys. Sin. 61 186103Google Scholar

    [19]

    Chuang R W, Yu C L, Chang S J, Chang P C, Lin J C, Kuan T M 2007 J. Cryst. Growth 308 252Google Scholar

    [20]

    Xu Z H, Zhang J C, Zhang Z F, Zhu Q W, Duan H T, Hao Y 2009 Chin. Phys. B 18 5457Google Scholar

    [21]

    Sun H D, Mitra S, Subedi R C, et al. 2019 Adv. Funct. Mater. 29 1905445Google Scholar

    [22]

    Zhang H C, Sun Y, Song K, Xing C, Yang L, Wang D H, Yu H B, Xiang X Q, Gao N, Xu G W, Sun H D, Long S B 2021 Appl. Phys. Lett. 119 072104Google Scholar

    [23]

    Shen X Q, Furuta K, Nakamura N, Matsuhata H, Shimizu M, Okumura H 2007 J. Cryst. Growth 301 404Google Scholar

    [24]

    Chierchia R, Bottcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918Google Scholar

    [25]

    郝跃, 张金风, 张进成 2013 氮化物宽禁带半导体材料与电子器件(北京: 科学出版社) 第25页

    Hao Y, Zhang J F, Zhang J C 2013 Nitride Wide Bandgap Semiconductor Materials and Electronic Devices (Beijing: Science Press) p25

    [26]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654Google Scholar

    [27]

    Yu H B, Chen H, Li D S, Wang J, Xing Z G, Zheng X H, Huang Q, Zhou J M 2004 J. Cryst. Growth 266 455Google Scholar

    [28]

    Lee J H, Lee D Y, Oh B W, Lee J H 2010 IEEE Trans. Electron Devices 57 157Google Scholar

    [29]

    Kong B H, Sun Q, Han J, Lee I H, Cho H K 2012 Appl. Surf. Sci. 258 2522Google Scholar

    [30]

    Pakula K, Baranowski J M, Borysiuk J 2007 Cryst. Res. Technol. 42 1176Google Scholar

    [31]

    Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850Google Scholar

  • [1] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [2] Qiao Jian-Liang, Xu Yuan, Gao You-Tang, Niu Jun, Chang Ben-Kang. Quantum efficiency for reflection-mode varied doping negative-electron-affinity GaN photocathode. Acta Physica Sinica, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [3] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [4] Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong. Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Physica Sinica, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [5] Lin Zhi-Yu, Zhang Jin-Cheng, Xu Sheng-Rui, Lü Ling, Liu Zi-Yang, Ma Jun-Cai, Xue Xiao-Yong, Xue Jun-Shuai, Hao Yue. TEM study of GaN films on vicinal sapphire (0001) substrates by MOCVD. Acta Physica Sinica, 2012, 61(18): 186103. doi: 10.7498/aps.61.186103
    [6] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Wang Xiao-Hui, Xu Yuan. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [7] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [8] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [9] Qiao Jian-Liang, Tian Si, Chang Ben-Kang, Du Xiao-Qing, Gao Pin. Activation mechanism of negative electron affinity GaN photocathode. Acta Physica Sinica, 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [10] Xiong Chuan-Bing, Jiang Feng-Yi, Fang Wen-Qing, Wang Li, Mo Chun-Lan. Change in stress of GaN light-emitting diode films during the process of transferring the film from the Si(111) growth substrate to new substrate. Acta Physica Sinica, 2008, 57(5): 3176-3181. doi: 10.7498/aps.57.3176
    [11] Meng Kang, Jiang Sen-Lin, Hou Li-Na, Li Chan, Wang Kun, Ding Zhi-Bo, Yao Shu-De. Study of radiation damage in Mg+-implanted GaN. Acta Physica Sinica, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [12] Song Shu-Fang, Chen Wei-De, Xu Zhen-Jia, Xu Xu-Rong. Deep level transient spectroscopy studies of Er and Pr implanted GaN films. Acta Physica Sinica, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [13] Ding Zhi-Bo, Yao Shu-De, Wang Kun, Cheng Kai. Characterization of crystal lattice constant and strain of GaN epilayers with different AlxGa1-xN and AlN buffer layers grown on Si(111). Acta Physica Sinica, 2006, 55(6): 2977-2981. doi: 10.7498/aps.55.2977
    [14] Liu Shi-Feng, Qin Guo-Gang, You Li-Ping, Zhang Ji-Cai, Fu Zhu-Xi, Dai Lun. Synthesis of GaN nanowires and nano-pyramids in a two-hot-boat chemical vapor deposition system via an In-doping technique. Acta Physica Sinica, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [15] Wan Wei, Tang Chun-Yan, Wang Yu-Mei, Li Fang-Hua. A study on the stacking fault in GaN crystals by high-resolution electron microscope imaging. Acta Physica Sinica, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [16] Xu Peng-Shou, Deng Rui, Pan Hai-Bin, Xu Fa-Qiang, Xie Chang-Kun, Li Yong-Hua, Liu Feng-Qin, K. Yibulaxin. Photoelectron diffraction study on the polarity of GaN surface. Acta Physica Sinica, 2004, 53(4): 1171-1176. doi: 10.7498/aps.53.1171
    [17] Zhang Jin-Cheng, Hao Yue, Li Pei-Xian, Fan Long, Feng Qian. Thickness measurement of GaN film based on transmission spectra. Acta Physica Sinica, 2004, 53(4): 1243-1246. doi: 10.7498/aps.53.1243
    [18] He Jun, Zheng Hao-Ping. . Acta Physica Sinica, 2002, 51(11): 2580-2588. doi: 10.7498/aps.51.2580
    [19] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
    [20] Xie Chang-Kun, Xu Fa-Qiang, Deng Rui, Xu Peng-Shou, Liu Feng-Qin, K.Yibulaxin. . Acta Physica Sinica, 2002, 51(11): 2606-2611. doi: 10.7498/aps.51.2606
Metrics
  • Abstract views:  3368
  • PDF Downloads:  129
  • Cited By: 0
Publishing process
  • Received Date:  16 May 2023
  • Accepted Date:  28 July 2023
  • Available Online:  02 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回
Baidu
map