Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3000 W tandem pumped all-fiber laser based on domestic fiber

Wang Ze-Hui Xiao Qi-Rong Wang Xue-Jiao Yi Yong-Qing Pang Lu Pan Rong Huang Yu-Sheng Tian Jia-Ding Li Dan Yan Ping Gong Ma-Li

Citation:

3000 W tandem pumped all-fiber laser based on domestic fiber

Wang Ze-Hui, Xiao Qi-Rong, Wang Xue-Jiao, Yi Yong-Qing, Pang Lu, Pan Rong, Huang Yu-Sheng, Tian Jia-Ding, Li Dan, Yan Ping, Gong Ma-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, high power fiber laser has received great attention, leading to wide applications in numerous fields such as industry, biology and relevant research. Nevertheless, the output power of typical diode pumped fiber laser is limited by the thermal effect and brightness of pump source. Owing to the low quantum deficit, the tandem pumping employing ytterbium-doped fiber lasers (YDFLs) as the pumping source can effectively reduce the thermal issue and achieve high power output. With the much lower absorption coefficient at 1018 nm than at 976 nm, longer gain fiber is necessary in tandem pumped configuration to sufficiently absorb pump light, which in turn induces a more severe nonlinear effect such as the stimulated Raman scattering, bringing in more challenges in laser configuration design. In this paper, we demonstrate an all-fiber laser under master oscillator power amplifier configuration based on tandem pumping with domestic gain fiber produced by China Electronics Technology Group Corporation No. 46 Research Institute. The diameters of the core and inner cladding of the Yb3+ doped double cladding fiber are 25 m and 250 m, respectively. The modified chemical vapor deposition method with gas-solution co-doping method is adopted so that the fiber has a more uniform distribution of Yb ions, larger absorption cross section and higher absorption coefficient (0.41 dB/m@1018 nm). In the amplifier stage, a 40-m-long gain fiber is pumped by fourteen 1018 nm fiber lasers with a maximum total output power of 3511 W. A 67.8 W 1080 nm seed is amplified to 3079 W with a corresponding slope efficiency of 85.9%. The beam quality factor M2 is measured to be 2.14. In addition, no stimulated Raman scattering is found in output spectrum and the 3 dB band width of output laser is measured to be 1.4 nm. To the best of our knowledge, this marks the highest result ever reported for tandem pumping based on domestic gain fiber. Taking stimulated Raman scattering into account, the rate equations are built to calculate the properties and power evolution in the fiber amplifier. The numerical results are in good agreement with the experiment results. Besides, based on heat conduction equation, heat power density in the fiber core is analyzed, showing that the tandem pumping has great advantages in heat management and a huge potential to reach a higher power compared with the method of direct pumping. The theoretical and experimental results show that with ever-maturing fiber manufacturing technology, domestic fiber is capable of withstanding laser power as high as 3 kilowatts. Meanwhile, domestic fiber may achieve a higher output power by increasing the pump power, optimizing the gain fiber length and improving the cooling condition.
      Corresponding author: Xiao Qi-Rong, xiaoqirong08@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675114) and the Initiative Scientific Research Program of Tsinghua University (THU), China (Grant No. 20151080709).
    [1]

    Jeong Y, Sahu J K, Payne D N, Nilsson J 2004 Opt. Express 12 6088

    [2]

    Fang Q, Shi W, Qin Y G, Meng X J, Zhang Q H 2014 Laser Phys. Lett. 11 105102

    [3]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011

    [4]

    Yan P, Yin S P, He J W, Fu C, Wang Y P, Gong M L 2011 IEEE Photon. Tech. L. 23 697

    [5]

    Khitrov V, Minelly J D, Tumminelli R, Petit V, Pooler E S 2014 Proc. SPIE San Francisco, California, United States, March 12, 2014 p89610V

    [6]

    Beier F, Hupel C, Kuhn S, Hein S, Nold J, Proske F, Sattler B, Liem A, Jauregui C, Limpert J 2017 Opt. Express 25 14892

    [7]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [8]

    Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193

    [9]

    Codemard C A, Sahu J K, Nilsson J 2010 IEEE J. Quantum Elect. 46 1860

    [10]

    Wu W M, Xiao H, Xu J M, Leng J Y, Zhou P, Guo S F 2011 Laser Optoelectr. Prog. 48 11 (in Chinese)[吴武明, 肖虎, 许将明, 冷进勇, 周朴, 郭少锋 2011 激光与光电子学进展 48 11]

    [11]

    Panbiharwala Y, Yang P, Nilsson J, Srinivasan B 2016 13th International Conference on Fiber Optics and Photonics Kanpur, India, December 4-8, 2016 Tu2E.3

    [12]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219

    [13]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645

    [14]

    Ferin A, Abramov M, O'Connor M, Fomin V, Gapontsev V 2009 Conference on Lasers and Electro-Optics Baltimore, Maryland, United States, May 31-June 5, 2009 CThA3

    [15]

    Ferin A, Gapontsev V, Fomin V, Abramov A, Abramov M, Mochalov D 2012 6th International Symposium on High-Power Fiber Lasers and Their Applications St.Petersburg, Russia, June 25-29, 2012 TuSY1-12

    [16]

    Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 8166

    [17]

    Yang H N, Zhao W, Si J H, Zhao B Y, Zhu Y G 2016 J. Opt. 18 125801

    [18]

    Zhou P, Xiao H, Leng J Y, Xu J M, Chen Z L, Zhang H W, Liu Z J 2017 JOSA B 34 A29

    [19]

    Wang Y S, Sun Y H, Ma Y, Li T L, Gao Q S, Tang C, Zhang K 2014 Chin. J. Lasers 42 69 (in Chinese)[王岩山, 孙殷宏, 马毅, 李腾龙, 高清松, 唐淳, 张凯 2014 中国激光 42 69]

    [20]

    Zhang H W, Xiao H, Zhou P, Wang X L, Xu X J 2014 Opt. Express 22 10248

    [21]

    Xiao Q R, Yan P, Li D, Sun J Y, Wang X J, Huang Y S, Gong M L 2016 Opt. Express 24 6758

    [22]

    Churkin D V, Babin S A, Eltaher A E, Harper P, Kablukov S I, Karalekas V, Aniacastan J D, Podivilov E V, Turitsyn S K 2010 Phys. Rev. A 82 033828

    [23]

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese)[王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 64 164204]

    [24]

    Yang W Q, Hou J, Song R, Liu Z J 2011 Acta Phys. Sin. 60 084210 (in Chinese)[杨未强, 侯静, 宋锐, 刘泽金 2011 60 084210]

    [25]

    Yan P, Wang X J, Huang Y S, Fu C, Sun J Y, Xiao Q R, Li D, Gong M L 2017 Chin. Phys. B 26 336

    [26]

    Zhu H T, Lou Q H, Zhou J, Qi Y F, Dong J X, Wei Y R 2008 Acta Phys. Sin. 57 4966 (in Chinese)[朱洪涛, 楼祺洪, 周军, 漆云凤, 董景星, 魏运荣 2008 57 4966]

    [27]

    Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 Proc. SPIE San Jose, California, United States, February 19, 2009 71951U

    [28]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

  • [1]

    Jeong Y, Sahu J K, Payne D N, Nilsson J 2004 Opt. Express 12 6088

    [2]

    Fang Q, Shi W, Qin Y G, Meng X J, Zhang Q H 2014 Laser Phys. Lett. 11 105102

    [3]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011

    [4]

    Yan P, Yin S P, He J W, Fu C, Wang Y P, Gong M L 2011 IEEE Photon. Tech. L. 23 697

    [5]

    Khitrov V, Minelly J D, Tumminelli R, Petit V, Pooler E S 2014 Proc. SPIE San Francisco, California, United States, March 12, 2014 p89610V

    [6]

    Beier F, Hupel C, Kuhn S, Hein S, Nold J, Proske F, Sattler B, Liem A, Jauregui C, Limpert J 2017 Opt. Express 25 14892

    [7]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [8]

    Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193

    [9]

    Codemard C A, Sahu J K, Nilsson J 2010 IEEE J. Quantum Elect. 46 1860

    [10]

    Wu W M, Xiao H, Xu J M, Leng J Y, Zhou P, Guo S F 2011 Laser Optoelectr. Prog. 48 11 (in Chinese)[吴武明, 肖虎, 许将明, 冷进勇, 周朴, 郭少锋 2011 激光与光电子学进展 48 11]

    [11]

    Panbiharwala Y, Yang P, Nilsson J, Srinivasan B 2016 13th International Conference on Fiber Optics and Photonics Kanpur, India, December 4-8, 2016 Tu2E.3

    [12]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219

    [13]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645

    [14]

    Ferin A, Abramov M, O'Connor M, Fomin V, Gapontsev V 2009 Conference on Lasers and Electro-Optics Baltimore, Maryland, United States, May 31-June 5, 2009 CThA3

    [15]

    Ferin A, Gapontsev V, Fomin V, Abramov A, Abramov M, Mochalov D 2012 6th International Symposium on High-Power Fiber Lasers and Their Applications St.Petersburg, Russia, June 25-29, 2012 TuSY1-12

    [16]

    Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 8166

    [17]

    Yang H N, Zhao W, Si J H, Zhao B Y, Zhu Y G 2016 J. Opt. 18 125801

    [18]

    Zhou P, Xiao H, Leng J Y, Xu J M, Chen Z L, Zhang H W, Liu Z J 2017 JOSA B 34 A29

    [19]

    Wang Y S, Sun Y H, Ma Y, Li T L, Gao Q S, Tang C, Zhang K 2014 Chin. J. Lasers 42 69 (in Chinese)[王岩山, 孙殷宏, 马毅, 李腾龙, 高清松, 唐淳, 张凯 2014 中国激光 42 69]

    [20]

    Zhang H W, Xiao H, Zhou P, Wang X L, Xu X J 2014 Opt. Express 22 10248

    [21]

    Xiao Q R, Yan P, Li D, Sun J Y, Wang X J, Huang Y S, Gong M L 2016 Opt. Express 24 6758

    [22]

    Churkin D V, Babin S A, Eltaher A E, Harper P, Kablukov S I, Karalekas V, Aniacastan J D, Podivilov E V, Turitsyn S K 2010 Phys. Rev. A 82 033828

    [23]

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese)[王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 64 164204]

    [24]

    Yang W Q, Hou J, Song R, Liu Z J 2011 Acta Phys. Sin. 60 084210 (in Chinese)[杨未强, 侯静, 宋锐, 刘泽金 2011 60 084210]

    [25]

    Yan P, Wang X J, Huang Y S, Fu C, Sun J Y, Xiao Q R, Li D, Gong M L 2017 Chin. Phys. B 26 336

    [26]

    Zhu H T, Lou Q H, Zhou J, Qi Y F, Dong J X, Wei Y R 2008 Acta Phys. Sin. 57 4966 (in Chinese)[朱洪涛, 楼祺洪, 周军, 漆云凤, 董景星, 魏运荣 2008 57 4966]

    [27]

    Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 Proc. SPIE San Jose, California, United States, February 19, 2009 71951U

    [28]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

  • [1] Duan Lei, Xu Run-Qin, Song Yun-Bo, Tan Shu-Dan, Liang Cheng-Bin, Xu Fan-Jiang, Liu Zhao-Hui. Theoretical model and numerical study of effect of target reflected light on high-power fiber laser. Acta Physica Sinica, 2023, 72(10): 104203. doi: 10.7498/aps.72.20222464
    [2] Xi Xiao-Ming, Yang Bao-Lai, Wang Peng, Zhang Han-Wei, Wang Xiao-Lin, Han Kai, Wang Ze-Feng, Xu Xiao-Jun, Chen Jin-Bao. Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors. Acta Physica Sinica, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [3] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [4] Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong. Optimization of thermal performance of cladding power stripper in fiber laser. Acta Physica Sinica, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [5] Cheng Li-Jun, Yang Su-Hui, Zhao Chang-Ming, Zhang Hai-Yang. High-power wideband radio-frequency intensity modulated continuous wave laser. Acta Physica Sinica, 2018, 67(3): 034203. doi: 10.7498/aps.67.20172017
    [6] Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun. Theoretical study of the temperature distribution in high power gain fiber of gradient doping. Acta Physica Sinica, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [7] Wang Xue-Jiao, Xiao Qi-Rong, Yan Ping, Chen Xiao, Li Dan, Du Cheng, Mo Qi, Yi Yong-Qing, Pan Rong, Gong Ma-Li. 3000 W direct-pumping all-fiber laser based on domestically produced fiber. Acta Physica Sinica, 2015, 64(16): 164204. doi: 10.7498/aps.64.164204
    [8] Xie Chen, Hu Ming-Lie, Xu Zong-Wei, Wu Wei, Gao Hai-Feng, Zhang Da-Peng, Qin Peng, Wang Yi-Sen, Wang Qing-Yue. High power bessel ultrashort pulses directly output from a fiber laser system. Acta Physica Sinica, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [9] Jiang Man, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Liu Ze-Jin. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping. Acta Physica Sinica, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [10] Zhang Da-Peng, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Physica Sinica, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [11] Dong Xiao-Lin, Xiao Hu, Ma Yan-Xing, Zhou Pu, Guo Shao-Feng. High power polarization-maintaining master oscillator power amplifier fiber laser in all-fiber format. Acta Physica Sinica, 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [12] Zhu Ya-Dong, Xiao Hu, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu. Coherent beam combination of two high power double clad fiber lasers by using an all-fiber Michelson cavity. Acta Physica Sinica, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [13] Xiao Hu, Leng Jin-Yong, Wu Wu-Ming, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu, Xu Xiao-Jun, Zhao Guo-Min. High efficiency tandem-pumped fiber amplifier. Acta Physica Sinica, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [14] Huang Lin, Dai Zhi-Yong, Liu Yong-Zhi. Influences of pumping manners on characteristics of all-fiber acousto-optic Q-switched lasers under different pulse repetition rates. Acta Physica Sinica, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [15] Yan Feng-Ping, Mao Xiang-Qiao, Wang Lin, Fu Yong-Jun, Wei Huai, Zheng Kai, Gong Tao-Rong, Liu Peng, Tao Pei-Lin, Jian Shui-Sheng. High stability mono-wavelength output optical fiber laser based on polarization-maintaining erbium-doped fiber. Acta Physica Sinica, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [16] Wang Jing, Zheng Kai, Li Jian, Liu Li-Song, Chen Gen-Xiang, Jian Shui-Sheng. Research on tunable erbium-doped ring fiber laser based on a high-birefringence Sagnac loop: theory and experiment. Acta Physica Sinica, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [17] Yan Feng-Ping, Wei Huai, Fu Yong-Jun, Wang Lin, Zheng Kai, Mao Xiang-Qiao, Liu Peng, Peng Jiang, Liu Li-Song, Jian Shui-Sheng. Tm3+ doped cladding pumped silica optic fiber laser. Acta Physica Sinica, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [18] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [19] Liu Yan-Ge, Zhang Chun-Shu, Sun Ting-Ting, Lu Yun-Fei, Wang Zhi, Yuan Shu-Zhong, Kai Gui-Yun, Dong Xiao-Yi. Clad-pumped Er3+/Yb3+-codoped short pulse fiber laser with high average power output exceeding 2W. Acta Physica Sinica, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [20] Li Hui-Qing, Zhang Jie, Cui Da-Fu, Xu Zu-Yan, Ning Yong-Qiang, Yan Chang-Ling, Qin Li, Liu Yun, Wang Li-Jun, Cao Jian-Lin. Optimal designs for high-power vertical cavity surface emitting lasers. Acta Physica Sinica, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
Metrics
  • Abstract views:  7330
  • PDF Downloads:  433
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2017
  • Accepted Date:  25 September 2017
  • Published Online:  20 January 2019

/

返回文章
返回
Baidu
map