-
The dielectric relaxation characteristic and mechanism of thermochromic microcapsule-epoxy insulating material are investigated. The results show that thermochromic microcapsule-epoxy insulating material exhibits non-monotonic dielectric relaxation characteristic, namely the dielectric relaxation time gradually increases with the temperature rising in a range of about 58–66 ℃, which cannot be depicted by the conventional Arrhenius equation or Vogel-Fulcher-Tammann equation. It is proposed that the non-monotonic dielectric relaxation characteristic is derived from the free volume variation induced by the confined phase transition in microcapsule. With the increase of temperature, the solid-liquid phase transition occurs in the limited space of microcapsule, reducing the free volume inside the microcapsule, which could restrict the reorientation of dipole with the external electric field and lead to the increase of dielectric relaxation time. The non-monotonic dielectric relaxation characteristic of thermochromic epoxy specimen is fitted based on the confined dielectric relaxation model, obtaining the activation energy of dielectric relaxation. The relaxation activation energy values of thermochromic epoxy insulating materials with different microcapsule content are of the same order of magnitude, indicating that the non-monotonic dielectric relaxations occur inside the thermochromic microcapsule, verifying the role of confined phase transition in the non-monotonic dielectric relaxation characteristic.
-
Keywords:
- thermochromism /
- confined phase transition /
- dielectric relaxation /
- free volume
[1] 盛戈皞, 钱勇, 罗林根, 宋辉, 刘亚东, 江秀臣 2021 高电压技术 47 3072Google Scholar
Sheng G H, Qian Y, Luo L G, Song H, Liu Y D, Jiang X C 2021 High Volt. Eng. 47 3072Google Scholar
[2] Huang X, Han L, Yang X, Huang Z, Hu J, Li Q, He J 2022 iEnergy 1 19Google Scholar
[3] Li S T, Yu S H, Feng Y 2016 High Volt. 1 122Google Scholar
[4] Zhang Y, Li S T, Gao J, Wang S, Wu K N, Li J Y 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1795Google Scholar
[5] 高建, 严智民, 李建英, 任志刚, 郭卫, 潘泽华 2022 西安交通大学学报 56 155Google Scholar
Gao J, Yan Z M, Li J Y, Ren Z G, Guo W, Pan Z H 2022 J. Xi’an Jiaotong Univ. 56 155Google Scholar
[6] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛 2016 65 077701Google Scholar
Lin S J, Huang Y, Xie D R, Min D M, Wang W W, Yang L Q, Li S T 2016 Acta. Phys. Sin. 65 077701Google Scholar
[7] Tian F Q, Ohki Y 2014 J. Phys. D:Appl. Phys. 47 045311Google Scholar
[8] Cheng L, Liu W F, Liu H B, Li S T 2020 J. Phys. D: Appl. Phys. 53 445502Google Scholar
[9] Li Z, Min D M, Niu H, Li S J, Zhang Y Y, Huang Y, Li S T 2021 J. Appl. Phys. 130 065101Google Scholar
[10] 高铭泽, 张沛红 2016 65 247802Google Scholar
Gao M Z, Zhang P H 2016 Acta. Phys. Sin. 65 247802Google Scholar
[11] Lian Z, Min D M, Li S T, Han Y S 2019 IEEE Trans. Terahertz Sci. Technol. 9 383Google Scholar
[12] Seeboth A, Lotzsch D, Ruhmann R and Muehling O 2014 Chem. Rev. 114 3037Google Scholar
[13] Gao J, Wu K N, Li J Y, Yin G L, Li S T 2023 Smart Mater. Struct. 32 015019Google Scholar
[14] Panák O, Držková M, Kaplanová M 2015 Dyes Pigm. 120 279Google Scholar
[15] Hajzeri M, Baˇsnec K, Bele M and Gunde M K 2015 Dyes Pigm. 113 754Google Scholar
[16] Ryabov Y E, Puzenko A, Feldman Y 2004 Phys. Rev. B 69 014204Google Scholar
[17] Frunza L, Schönhals A, Frunza S, Parvulescu V I, Cojocaru B, Carriazo D, Martín C, Rives V 2007 J. Phys. Chem. A 111 5166Google Scholar
[18] Feldman Y, Gusev Y A, Vasilyeva M A 2012 Dielectric Relaxation Phenomena in Complex Systems (Kazan: Kazan University) pp100–108
[19] Ryabov Y, Gutina A, Arkhipov V, Feldman Y 2001 J. Phys. Chem. B 105 1845Google Scholar
[20] Bitton G, Feldman Y, Agranat A J 2002 J. Non-Cryst. Solids 305 362Google Scholar
-
表 1 介电松弛时间温度特性的拟合参数
Table 1. Fitting parameters of temperature dependences of dielectric relaxation times.
微胶囊含量/phr Ea/eV Eb/eV C 0.2 154.39 0.064 22570 0.5 119.28 0.044 9933 1.0 139.90 0.054 17250 -
[1] 盛戈皞, 钱勇, 罗林根, 宋辉, 刘亚东, 江秀臣 2021 高电压技术 47 3072Google Scholar
Sheng G H, Qian Y, Luo L G, Song H, Liu Y D, Jiang X C 2021 High Volt. Eng. 47 3072Google Scholar
[2] Huang X, Han L, Yang X, Huang Z, Hu J, Li Q, He J 2022 iEnergy 1 19Google Scholar
[3] Li S T, Yu S H, Feng Y 2016 High Volt. 1 122Google Scholar
[4] Zhang Y, Li S T, Gao J, Wang S, Wu K N, Li J Y 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1795Google Scholar
[5] 高建, 严智民, 李建英, 任志刚, 郭卫, 潘泽华 2022 西安交通大学学报 56 155Google Scholar
Gao J, Yan Z M, Li J Y, Ren Z G, Guo W, Pan Z H 2022 J. Xi’an Jiaotong Univ. 56 155Google Scholar
[6] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛 2016 65 077701Google Scholar
Lin S J, Huang Y, Xie D R, Min D M, Wang W W, Yang L Q, Li S T 2016 Acta. Phys. Sin. 65 077701Google Scholar
[7] Tian F Q, Ohki Y 2014 J. Phys. D:Appl. Phys. 47 045311Google Scholar
[8] Cheng L, Liu W F, Liu H B, Li S T 2020 J. Phys. D: Appl. Phys. 53 445502Google Scholar
[9] Li Z, Min D M, Niu H, Li S J, Zhang Y Y, Huang Y, Li S T 2021 J. Appl. Phys. 130 065101Google Scholar
[10] 高铭泽, 张沛红 2016 65 247802Google Scholar
Gao M Z, Zhang P H 2016 Acta. Phys. Sin. 65 247802Google Scholar
[11] Lian Z, Min D M, Li S T, Han Y S 2019 IEEE Trans. Terahertz Sci. Technol. 9 383Google Scholar
[12] Seeboth A, Lotzsch D, Ruhmann R and Muehling O 2014 Chem. Rev. 114 3037Google Scholar
[13] Gao J, Wu K N, Li J Y, Yin G L, Li S T 2023 Smart Mater. Struct. 32 015019Google Scholar
[14] Panák O, Držková M, Kaplanová M 2015 Dyes Pigm. 120 279Google Scholar
[15] Hajzeri M, Baˇsnec K, Bele M and Gunde M K 2015 Dyes Pigm. 113 754Google Scholar
[16] Ryabov Y E, Puzenko A, Feldman Y 2004 Phys. Rev. B 69 014204Google Scholar
[17] Frunza L, Schönhals A, Frunza S, Parvulescu V I, Cojocaru B, Carriazo D, Martín C, Rives V 2007 J. Phys. Chem. A 111 5166Google Scholar
[18] Feldman Y, Gusev Y A, Vasilyeva M A 2012 Dielectric Relaxation Phenomena in Complex Systems (Kazan: Kazan University) pp100–108
[19] Ryabov Y, Gutina A, Arkhipov V, Feldman Y 2001 J. Phys. Chem. B 105 1845Google Scholar
[20] Bitton G, Feldman Y, Agranat A J 2002 J. Non-Cryst. Solids 305 362Google Scholar
Catalog
Metrics
- Abstract views: 2824
- PDF Downloads: 64
- Cited By: 0