Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical analysis of GaN-based semiconductor in changing performanc of perovskite solar cell

Zhu Xiao-Li Qiu Peng Wei Hui-Yun He Ying-Feng Liu Heng Tian Feng Qiu Hong-Yu Du Meng-Chao Peng Ming-Zeng Zheng Xin-He

Citation:

Theoretical analysis of GaN-based semiconductor in changing performanc of perovskite solar cell

Zhu Xiao-Li, Qiu Peng, Wei Hui-Yun, He Ying-Feng, Liu Heng, Tian Feng, Qiu Hong-Yu, Du Meng-Chao, Peng Ming-Zeng, Zheng Xin-He
PDF
HTML
Get Citation
  • GaN-based semiconductor has been used in optoelectronics and electronic devices. It is a new research topic at present that how its good electrical properties are integrated together to explore other applications in theory or experiment. In this work, SCAPS-1D software is used to calculate the mechanism of GaN electron transport in an FTO/GaN/(FAPbI3)0.85(MAPbBr3)0.15/HTL perovskite solar cell (PSC) structure. The results show that when GaN is used in PSC, the Voc increases from 0.78 V to 1.21 V, PCE increases from 15.87% to 24.18%, and that the small conduction band cliff formed between GaN and the active layer can improve the efficiency of the cell. Quasi-Fermi level splitting, interfacial electric field, interfacial recombination rate and depletion zone thickness at different doping concentrations s are analyzed. The influences of GaN thickness and doping concentration on open-circuit voltage and other device parameters are investigated. The physical mechanism of GaN as an electron transport layer is discussed. With the increase of the thickness, the Jsc of this solar cell decreases gradually, but the change range is not large (24.13—23.83 mA/cm2). The Voc decreases from 1.30 V to 1.21 V when the thickness of GaN exceeds 100nm, and then keeps stable. The power conversion efficiency changing regularity appears in the form of “pits” —first decreases, then increases, and finally keeps stable, with the highest efficiency being 24.76% and the corresponding GaN thickness being 245 nm. The FF shows a trend, which is first decreasing, then increasing, and finally leveling off. In the case of the doping concentration and thickness change at the same time, during the increase of doping concentration, the Jsc decreases gradually with the increase of thickness, but the overall change range is small, and the open-circuit voltage, filling factor and conversion efficiency all show “pits” changes. When the thickness of GaN is 200 nm, with the concentration of GaN doping increasing, the quasi Fermi level splitting increases, and the strength of the built-in electric field between the active layer and the GaN layer increases, thus providing a greater driving force for carrier separation, resulting in a larger potential difference Δμ, and thus a larger Voc. With the increase of doping concentration, the recombination rate of the active layer/GaN layer interface and the recombination rate inside the active layer increase, which leads the value of Jsc to decrease. It is found that the position of the “concave point” of Voc under the change of GaN thickness is determined by varying the GaN doping concentration, the width of GaN depletion region between GaN/FTO, and the width of GaN depletion region between GaN/active layer determine the width of the whole “pit”. In summary, the cell parameters can be improved by simultaneously changing the thickness and doping concentration of GaN.
      Corresponding author: Zheng Xin-He, xinhezheng@ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703700), the National Natural Science Foundation of China (Grant No. 52002021), and the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-IDRY-20-037).
    [1]

    Koblmuller G, Wu F, Mates T, Speck J S, Fernandez-Garrido S, Calleja E 2007 Appl. Phys. Lett. 91 221905Google Scholar

    [2]

    Yildirim M A, Teker K 2021 Nano 16 2150021Google Scholar

    [3]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [4]

    Luo Y Q, Khoram P, Brittman S, Zhu Z Y, Lai B, Ong S P, Garnett E C, Fenning D P 2017 Adv. Mater. 29 1703451Google Scholar

    [5]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [6]

    Dequilettes D W, Zhang W, Burlakov V M, et al. 2016 Nat. Commun. 7 11683Google Scholar

    [7]

    Raoui Y, Ez-Zahraouy H, Tahiri N, El Bounagui O, Ahmad S, Kazim S 2019 Sol. Energy 193 948Google Scholar

    [8]

    Mandadapu U, Vedanayakam S V, Thyagarajan K, Reddy M R, Babu B J 2017 Int. J. Energy Res. 7 1603

    [9]

    Okamoto Y, Suzuki Y 2016 J. Phys. Chem. C 120 13995Google Scholar

    [10]

    Qiu P, Wei H Y, An Y L, et al. 2020 Ceram. Int. 46 5765Google Scholar

    [11]

    Wei H Y, Wu J H, Qiu P, et al. 2019 J. Mater. Chem. A 7 25347Google Scholar

    [12]

    Lee K J, Min J W, Turedi B, et al. 2020 ACS Energy Lett. 5 3295Google Scholar

    [13]

    Lin S, Zhang B P, Lu T Y, Zheng J C, Pan H Q, Chen H T, Lin C J, Li X R, Zhou J R 2021 Acs Omega 6 26689Google Scholar

    [14]

    Chen P, Bai Y, Wang L Z 2021 Small Struct. 2 2000050Google Scholar

    [15]

    Mahesh S, Ball J M, Oliver R D J, Mcmeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [16]

    Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y, Zhang X D 2020 Adv. Mater. 32 1905766Google Scholar

    [17]

    Zhou X Y, Hu M M, Liu C, Zhang L Z, Zhong X W, Li X N, Tian Y Q, Cheng C, Xu B M A 2019 Nano Energy 63 103866Google Scholar

    [18]

    Han W B, Ren G H, Liu J M, Li Z Q, Bao H C, Liu C Y, Guo W B 2020 ACS Appl. Mater. Interfaces 12 49297Google Scholar

    [19]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [20]

    Burgelman M, Nollet P, Degrave S 2000 Thin Solid Films 361 527Google Scholar

    [21]

    Bal S S, Basak A, Singh U P 2022 Opt. Mater. 127 112282Google Scholar

    [22]

    Kumar P, Shankar G, Pradhan B 2022 Mater. Today Proc. 66 3392Google Scholar

    [23]

    Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S 2022 Sol. Energy 236 195Google Scholar

    [24]

    Muth J F, Lee J E, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, Denbaars 1997 Appl. Phys. Lett. 71 2572Google Scholar

    [25]

    Levinshtein M E, Rumyantsev S L, Shur M S 2001 Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (John Wiley & Sons) pp1–28

    [26]

    Zhang D Y, Xu P, Wu T, Ou Y M, Yang X T, Sun A X, Cui B, Sun H W, Hua Y 2019 J. Mater. Chem. A 7 5221Google Scholar

    [27]

    Jeyakumar R, Bag A, Nekovei R, Radhakrishnan R 2020 J. Electron. Mater. 49 3533Google Scholar

    [28]

    Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar

    [29]

    甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 70 038801Google Scholar

    Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta. Phys. Sin. 70 038801Google Scholar

    [30]

    He Y Z, Xu L Y, Yang C, Guo X W, Li S R 2021 Nanomaterials 11 2321Google Scholar

    [31]

    Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar

    [32]

    Tan K, Lin P, Wang G, Liu Y, Xu Z C, Lin Y X 2016 Solid State Electron. 126 75Google Scholar

    [33]

    Turcu M, Rau U 2003 J. Phys. Chem. Solids 64 1591Google Scholar

    [34]

    Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar

    [35]

    Leijtens T, Eperon G E, Barker A J, et al. 2016 Energy Environ. Sci. 9 3472Google Scholar

    [36]

    Stolterfoht M, Wolff C M, Marquez J A, et al. 2018 Nat. Energy 3 847Google Scholar

    [37]

    Caprioglio P, Stolterfoht M, Wolff C M, Unold T, Rech B, Albrecht S, Neher D 2019 Adv. Energy Mater. 9 1901631Google Scholar

    [38]

    Ran C X, Xu J T, Gao W Y, Huang C M, Dou S X 2018 Chem. Soc. Rev. 47 4581Google Scholar

    [39]

    Duha A U, Borunda M F 2022 Opt. Mater. 123 111891Google Scholar

    [40]

    肖友鹏, 王涛, 魏秀琴, 周浪 2017 66 108801Google Scholar

    Xiao Y P, Wang T, Wei X Q, Zhou L 2017 Acta. Phys. Sin. 66 108801Google Scholar

    [41]

    Trukhanov V A, Bruevich V V, Paraschuk D Y 2011 Phys. Rev. B 84 205318Google Scholar

    [42]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001Google Scholar

    [43]

    Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D 2014 Nano Lett. 14 1000Google Scholar

    [44]

    Deng Y H, Ni Z Y, Palmstrom A F, Zhao J J, Xu S, Van Brackle C H, Xiao X, Zhu K, Huang J S 2020 Joule 4 1949Google Scholar

    [45]

    Xu G Y, Xue R M, Stuard S J, Ade H, Zhang C J, Yao J L, Li Y W, Li Y F 2021 Adv. Mater. 33 2006753Google Scholar

    [46]

    Wang D, Wu C C, Luo W, Guo X, Qu B, Xiao L X, Chen Z J 2018 ACS Appl. Energy Mater. 1 2215Google Scholar

    [47]

    Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energy Mater Sol. Cells 67 83Google Scholar

    [48]

    Nollet P, Kontges M, Burgelman M, Degrave D S, Reineke-Koch R 2003 Thin Solid Films 431 414Google Scholar

    [49]

    Belarbi M, Zeggai O, Khettaf S, Louhibi-Fasla S 2022 Semicond. Sci. Tech. 37 095016Google Scholar

    [50]

    Ghosh S, Porwal S, Singh T 2022 Optik 256 168749Google Scholar

  • 图 1  (a)钙钛矿电池的结构; (b) GaN层在电池中的理论能带匹配

    Figure 1.  (a) Structure of perovskite cells; (b) theoretical band matching of GaN layer in batteries.

    图 2  (a)光照下有GaN层与无GaN层的电池J-V曲线; (b) 光照后电池处于热平衡状态时的能带图

    Figure 2.  J-V curve of solar cells with and without GaN layer under lighting; (b) the band of GaN as ETL in perovskite solar cell after illumination.

    图 3  (a)—(d) GaN厚度变化对电池各参数的影响

    Figure 3.  (a)–(d) Effect of GaN thickness variation on battery parameters.

    图 4  活性层与不同厚度的GaN层接触时的结果 (a)能带图; (b)导带与准电子费米能级分布图; (c)界面电场图

    Figure 4.  Results of the active layer is in contact with GaN layer of different thickness: (a) Energy band map; (b) band map of conduction band and quasi-Fermi level of electrons; (c) interfacial electric field map diagram.

    图 5  (a) Jmpp和(b) Vmpp随GaN厚度的变化

    Figure 5.  Variation of (a) Jmpp and (b)Vmpp with GaN thickness

    图 6  (a)—(d) GaN掺杂浓度和厚度对电池Jsc, Voc, FF, PCE的模拟结果

    Figure 6.  (a)–(d) Simulation results of Jsc, Voc, FF, PCE under Nd and thickness of GaN.

    图 7  GaN不同掺杂浓度下, 光照前电池平衡能级图(a)—(e)和光照后电池能级图(f)—(j)

    Figure 7.  Equilibrium energy level diagram of solar cell before illumination (a)–(e) and energy level diagram of the solar cell after illumination (f)–(j) under different doping concentrations.

    图 8  GaN不同掺杂浓度下, 活性层/GaN界面的电场分布(a)和电池内部复合率(b)

    Figure 8.  Electric field distribution of active layer/GaN interface (a) and recombination rate inside the cell (b) under different doping concentrations.

    图 9  活性层/GaN/FTO结构能带匹配图

    Figure 9.  Band matching of active layer/GaN/FTO structure.

    图 10  (a)不同GaN厚度光照前的热平衡能带图; (b)光照后能带图; (c)光照后的导带图; (d)光照后的价带图

    Figure 10.  (a) Thermal balance band of different GaN’s thicknesses before illumination; (b) post-illumination band map; (c) band chart after illumination; (d) valence band map after illumination.

    表 1  模拟中使用的参数

    Table 1.  Parameters used in the simulation.

    参数GaN活性层HTL
    厚度/μm0.100.550.10
    带隙/eV3.40[24]1.55[11]3.11
    电子亲和势/eV4.10[25]4.05[26]2.25
    介电常数 (relative)8.906.503.00
    导带有效态密度/(1018 cm–3)2.302.202.20[27]
    价带有效态密度/(1019 cm–3)4.601.801.80[27]
    电子热速度/(107 cm·s–1)1.001.001.00
    空穴热速度/(107 cm·s–1)1.001.001.00
    电子迁移率/(102 cm·V–1·s–1)10.05.001.00
    空穴迁移率/(cm·V–1·s–1)1006050
    浅均匀掺杂施主浓度 ND/(1016 cm–3)1.00
    浅均匀掺杂受主浓度 NA/(1015 cm–3)1.001.00×103[27]
    缺陷浓度/(1015 cm–3)1.001.00×10–21.00
    DownLoad: CSV

    表 2  GaN与活性层、活性层与空穴传输层之间的参数

    Table 2.  Parameters of GaN/active and active/HTL layer interfaces.

    参数GaN/活性层界面活性层/HTL界面
    缺陷类型中性中性
    电子捕获截面/(10–19 cm2)1.01.0
    空穴捕获截面/(10–19 cm2)1.01.0
    能量分布单一单一
    缺陷能级Et的参考高于最高价带能级高于最高价带能级
    相对于参考能级的能量/eV0.60.6
    缺陷密度/(1010 cm–3)1.0×1051.0
    DownLoad: CSV

    表 3  有GaN与无GaN时电池模拟参数对比

    Table 3.  Comparison of solar cell simulation parameters with and without GaN.

    SamplesJsc/ (mA·cm–2)Voc/VFF/%PCE/%Vmpp /VJmpp / (mA·cm–2)
    With GaN24.121.2182.6724.181.0522.99
    Free GaN24.030.7884.4415.870.6922.93
    DownLoad: CSV

    表 4  GaN/FTO耗尽区宽度与Voc变化宽度对比

    Table 4.  Comparison between depletion width of GaN/FTO interface and Voc variation width.

    ParametersNd/cm–3
    10151016101710181019
    GaN/FTO异质结中GaN耗尽区厚度/nm84.0029.469.18
    Voc随厚度变化的凹点宽度/nm84.0029.009.00
    活性层/GaN异质结中GaN耗尽区厚度/nm40.1713.653.80
    Voc随厚度变化的凹点位置/nm40.0013.003.00
    DownLoad: CSV
    Baidu
  • [1]

    Koblmuller G, Wu F, Mates T, Speck J S, Fernandez-Garrido S, Calleja E 2007 Appl. Phys. Lett. 91 221905Google Scholar

    [2]

    Yildirim M A, Teker K 2021 Nano 16 2150021Google Scholar

    [3]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [4]

    Luo Y Q, Khoram P, Brittman S, Zhu Z Y, Lai B, Ong S P, Garnett E C, Fenning D P 2017 Adv. Mater. 29 1703451Google Scholar

    [5]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [6]

    Dequilettes D W, Zhang W, Burlakov V M, et al. 2016 Nat. Commun. 7 11683Google Scholar

    [7]

    Raoui Y, Ez-Zahraouy H, Tahiri N, El Bounagui O, Ahmad S, Kazim S 2019 Sol. Energy 193 948Google Scholar

    [8]

    Mandadapu U, Vedanayakam S V, Thyagarajan K, Reddy M R, Babu B J 2017 Int. J. Energy Res. 7 1603

    [9]

    Okamoto Y, Suzuki Y 2016 J. Phys. Chem. C 120 13995Google Scholar

    [10]

    Qiu P, Wei H Y, An Y L, et al. 2020 Ceram. Int. 46 5765Google Scholar

    [11]

    Wei H Y, Wu J H, Qiu P, et al. 2019 J. Mater. Chem. A 7 25347Google Scholar

    [12]

    Lee K J, Min J W, Turedi B, et al. 2020 ACS Energy Lett. 5 3295Google Scholar

    [13]

    Lin S, Zhang B P, Lu T Y, Zheng J C, Pan H Q, Chen H T, Lin C J, Li X R, Zhou J R 2021 Acs Omega 6 26689Google Scholar

    [14]

    Chen P, Bai Y, Wang L Z 2021 Small Struct. 2 2000050Google Scholar

    [15]

    Mahesh S, Ball J M, Oliver R D J, Mcmeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [16]

    Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y, Zhang X D 2020 Adv. Mater. 32 1905766Google Scholar

    [17]

    Zhou X Y, Hu M M, Liu C, Zhang L Z, Zhong X W, Li X N, Tian Y Q, Cheng C, Xu B M A 2019 Nano Energy 63 103866Google Scholar

    [18]

    Han W B, Ren G H, Liu J M, Li Z Q, Bao H C, Liu C Y, Guo W B 2020 ACS Appl. Mater. Interfaces 12 49297Google Scholar

    [19]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [20]

    Burgelman M, Nollet P, Degrave S 2000 Thin Solid Films 361 527Google Scholar

    [21]

    Bal S S, Basak A, Singh U P 2022 Opt. Mater. 127 112282Google Scholar

    [22]

    Kumar P, Shankar G, Pradhan B 2022 Mater. Today Proc. 66 3392Google Scholar

    [23]

    Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S 2022 Sol. Energy 236 195Google Scholar

    [24]

    Muth J F, Lee J E, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, Denbaars 1997 Appl. Phys. Lett. 71 2572Google Scholar

    [25]

    Levinshtein M E, Rumyantsev S L, Shur M S 2001 Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (John Wiley & Sons) pp1–28

    [26]

    Zhang D Y, Xu P, Wu T, Ou Y M, Yang X T, Sun A X, Cui B, Sun H W, Hua Y 2019 J. Mater. Chem. A 7 5221Google Scholar

    [27]

    Jeyakumar R, Bag A, Nekovei R, Radhakrishnan R 2020 J. Electron. Mater. 49 3533Google Scholar

    [28]

    Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar

    [29]

    甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 70 038801Google Scholar

    Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta. Phys. Sin. 70 038801Google Scholar

    [30]

    He Y Z, Xu L Y, Yang C, Guo X W, Li S R 2021 Nanomaterials 11 2321Google Scholar

    [31]

    Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar

    [32]

    Tan K, Lin P, Wang G, Liu Y, Xu Z C, Lin Y X 2016 Solid State Electron. 126 75Google Scholar

    [33]

    Turcu M, Rau U 2003 J. Phys. Chem. Solids 64 1591Google Scholar

    [34]

    Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar

    [35]

    Leijtens T, Eperon G E, Barker A J, et al. 2016 Energy Environ. Sci. 9 3472Google Scholar

    [36]

    Stolterfoht M, Wolff C M, Marquez J A, et al. 2018 Nat. Energy 3 847Google Scholar

    [37]

    Caprioglio P, Stolterfoht M, Wolff C M, Unold T, Rech B, Albrecht S, Neher D 2019 Adv. Energy Mater. 9 1901631Google Scholar

    [38]

    Ran C X, Xu J T, Gao W Y, Huang C M, Dou S X 2018 Chem. Soc. Rev. 47 4581Google Scholar

    [39]

    Duha A U, Borunda M F 2022 Opt. Mater. 123 111891Google Scholar

    [40]

    肖友鹏, 王涛, 魏秀琴, 周浪 2017 66 108801Google Scholar

    Xiao Y P, Wang T, Wei X Q, Zhou L 2017 Acta. Phys. Sin. 66 108801Google Scholar

    [41]

    Trukhanov V A, Bruevich V V, Paraschuk D Y 2011 Phys. Rev. B 84 205318Google Scholar

    [42]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001Google Scholar

    [43]

    Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D 2014 Nano Lett. 14 1000Google Scholar

    [44]

    Deng Y H, Ni Z Y, Palmstrom A F, Zhao J J, Xu S, Van Brackle C H, Xiao X, Zhu K, Huang J S 2020 Joule 4 1949Google Scholar

    [45]

    Xu G Y, Xue R M, Stuard S J, Ade H, Zhang C J, Yao J L, Li Y W, Li Y F 2021 Adv. Mater. 33 2006753Google Scholar

    [46]

    Wang D, Wu C C, Luo W, Guo X, Qu B, Xiao L X, Chen Z J 2018 ACS Appl. Energy Mater. 1 2215Google Scholar

    [47]

    Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energy Mater Sol. Cells 67 83Google Scholar

    [48]

    Nollet P, Kontges M, Burgelman M, Degrave D S, Reineke-Koch R 2003 Thin Solid Films 431 414Google Scholar

    [49]

    Belarbi M, Zeggai O, Khettaf S, Louhibi-Fasla S 2022 Semicond. Sci. Tech. 37 095016Google Scholar

    [50]

    Ghosh S, Porwal S, Singh T 2022 Optik 256 168749Google Scholar

  • [1] Han Fei, Jiang Zhou, Wang Chen, Zhou Hua, Shen Xiang-Qian. Optical enhancement of perovskite solar cells by metallic nano-patterns. Acta Physica Sinica, 2024, 73(16): 168801. doi: 10.7498/aps.73.20240607
    [2] Zhang Jian, Wang Xin-Qiao, Su Tong, Chen Ying, Guo Yong-Quan. Calculation of thermic and electric properties and valence electron structure for metallic electrodes of Na||Sb-Pb-Sn liquid metal battery. Acta Physica Sinica, 2021, 70(8): 083101. doi: 10.7498/aps.70.20201624
    [3] Liu Fang-Fang, He Qing, Zhou Zhi-Qiang, Sun Yun. Effects of Cu elements on Cu(In,Ga)Se2 film and solar cell. Acta Physica Sinica, 2014, 63(6): 067203. doi: 10.7498/aps.63.067203
    [4] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [5] Liu Bo-Fei, Bai Li-Sha, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan. Modification to the performance of hydrogenated amorphous silicon germanium thin film solar cell. Acta Physica Sinica, 2013, 62(20): 208801. doi: 10.7498/aps.62.208801
    [6] Xiao Wen-Bo, He Xing-Dao, Gao Yi-Qing. Experimental investigation on open-circuit voltage of InGaP/InGaAs/Ge triple-junction solar cell influenced by the vibration direction of the electric vector of linearly polarized light. Acta Physica Sinica, 2012, 61(10): 108802. doi: 10.7498/aps.61.108802
    [7] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [8] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [9] Li Rong-Hua, Meng Wei-Min, Peng Ying-Quan, Ma Chao-Zhu, Wang Run-Sheng, Xie Hong-Wei, Wang Ying, Ye Zao-Chen. Investigation on the effect of cathode work function and exciton generation rate on the open-circuit voltage of single layer organic solar cell with Schottky contact. Acta Physica Sinica, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [10] Zhou Mei, Chang Qing-Ying, Zhao De-Gang. A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector. Acta Physica Sinica, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [11] Lü Ling, Gong Xin, Hao Yue. Properties of p-type GaN etched by inductively coupled plasma and their improvement. Acta Physica Sinica, 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [12] Zhou Mei, Zhao De-Gang. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [13] Zhou Mei, Zuo Shu-Hua, Zhao De-Gang. A new Schottky barrier structure of GaN-based ultraviolet photodetector. Acta Physica Sinica, 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [14] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [15] Song Shu-Fang, Chen Wei-De, Xu Zhen-Jia, Xu Xu-Rong. Study on optical properties of Er/Er+O doped GaN thin films. Acta Physica Sinica, 2007, 56(3): 1621-1626. doi: 10.7498/aps.56.1621
    [16] Guo Liang-Liang, Feng Qian, Ma Xiang-Bai, Hao Yue, Liu Jie. Relation between breakdown voltage and current collapse in GaN FP-HEMTs. Acta Physica Sinica, 2007, 56(5): 2900-2904. doi: 10.7498/aps.56.2900
    [17] Song Shu-Fang, Chen Wei-De, Xu Zhen-Jia, Xu Xu-Rong. Deep level transient spectroscopy studies of Er and Pr implanted GaN films. Acta Physica Sinica, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [18] Meng Kang, Jiang Sen-Lin, Hou Li-Na, Li Chan, Wang Kun, Ding Zhi-Bo, Yao Shu-De. Study of radiation damage in Mg+-implanted GaN. Acta Physica Sinica, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [19] Wan Wei, Tang Chun-Yan, Wang Yu-Mei, Li Fang-Hua. A study on the stacking fault in GaN crystals by high-resolution electron microscope imaging. Acta Physica Sinica, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [20] Qin Qi, Yu Nai-Sen, Guo Li-Wei, Wang Yang, Zhu Xue-Liang, Chen Hong, Zhou Jun-Ming. Residual stress in the GaN epitaxial film prepared by in situ SiNx deposition. Acta Physica Sinica, 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
Metrics
  • Abstract views:  4242
  • PDF Downloads:  201
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2023
  • Accepted Date:  21 February 2023
  • Available Online:  23 March 2023
  • Published Online:  20 May 2023

/

返回文章
返回
Baidu
map