-
本文采用基于周期性密度泛函理论研究了Cu/N表面沉积共掺杂对锐钛矿相TiO2(001)面的修饰作用. 计算了Cu在不同位置掺杂TiO2(101)面和(001)面的形成能,并在此基础上计算N不同位置掺杂TiO2(001)面及Cu/TiO2(001)面的形成能,通过形成能的比较获得了表面共掺杂的最优化结构. 在此基础上计算了最稳定结构的能带结构及态密度,并与S单掺杂TiO2(001)面最稳定结构进行了对比. 通过对结果的分析发现:Cu/N在(001)表面的沉积共掺杂有效降低了TiO2 的禁带宽度,并在表面形成CuO2 相,更利于提高其光催化活性.
-
关键词:
- 密度泛函理论 /
- Cu/N掺杂TiO2 /
- 最优化表面 /
- 形成能
First principles density functional theory calculations are carried out to investigate the interactions between implanted copper and nitrogen atoms at the anatase TiO2 (001) surface. The doped configurations and formation energies of Cu on TiO2 (001) and TiO2 (101) surfaces, N on TiO2 (001) and Cu/TiO2 (001) surfaces have been considered, and the perfected structures are obtained. Compared with the S/TiO2 (001) perfected structure, the analyses of the band structure and density of states of Cu/N-TiO2 (001) show that the band gap is decreased obviously when the CuO2 state occurrs; this could improve the photocatalytic activity significantly.-
Keywords:
- dengsity function theory /
- Cu/N co-doped TiO2 /
- perfected surface /
- formation energy
[1] Wang P, Grätze M 2003 Nat. Mater. 21 402
[2] [3] Hagfeldt A, Grätzel M 1995 Chem. Rev. 95 49
[4] [5] Mills A, Hunte S L 1997 J. Photoch. Photobio. A 08 1
[6] [7] [8] Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Str. 1061 160
[9] [10] Yang K S, Dai Y, Huang B B 2009 Chem. Phys. Chem. 10 2327
[11] Zhu Y T, Wei W, Dai Y, Huang B B 2012 Appl. Surf. Sci. 258 4806
[12] [13] Wang Y J, Wang C Y, Wang S Y 2013 Chin. Phys. B 03 364
[14] [15] Li W, Wei S H, Duan X M 2014 Chin. Phys. B 02???? 465
[16] [17] Maeda M, Yamada T 2007 J. Phys.:Conf. Ser. 61 755
[18] [19] [20] Sreethawong T, Yoshikawa S 2005 Photocatalys. Catal. Commun. 6 661
[21] [22] Rodríguez J A, Evans J, Graciano J, Park J B, Liu P, Hrbek J, Sanz J F 2009 J. Phys. Chem. C 113 7364
[23] [24] Karunakaran C, Abiramasundari G, Gomathisankar P 2010 J. Colloid Interf. Sci. 352 68
[25] Zhao X W, Xi H P, Liao Q W 2013 Acta Phys. -Chim. Sin. 29 2232
[26] [27] [28] Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 [李宗宝, 王霞, 贾礼超 2013 62 203103]
[29] [30] Sakthivel R, Ntho T, Witcomb M, Scurrell M S 2009 Catal. Lett. 130 341
[31] [32] Zhang X J, Zhang G F, Jin H X, Zhu L D, Liu Q J 2013 Acta Phys. Sin. 62 017102 [张学军, 张光富, 金辉霞, 朱良迪, 柳清菊 2013 62 017102]
[33] [34] Liu C, Tang X H, Mo C H, Qiang Z M 2008 J. Solid State Chem. 181 913
[35] [36] Obata K, Irie H, Hashimoto K 2007 Chem. Phys. 339 124
[37] Yang G D, Jiang Z, Shi H H, Jones M O, Xiao T C, Edwards P P, Yan Z F 2010 Appl. Catal. B 96 458
[38] [39] Morikawa T, Irokawa Y, Ohwaki T 2006 Appl. Catal. A 314 123
[40] [41] [42] Song K, Zhou J, Bao J, Feng Y 2008 J. Am. Ceram. Soc. 91 1369
[43] Wang C, Hu Q Q, Huang J Q 2014 Appl. Surf. Sci. 292 161
[44] [45] [46] Pham T D, Lee B K 2014 Appl. Surf. Sci. 296 15
[47] Finazzi E, Valentin C D, Selloni A, Pacchioni G 2007 J. Phys. Chem. C 111 9275
[48] [49] Lee J H, Hevia D F, Selloni A 2013 Phys. Rev. Lett. 110 5
[50] [51] Perdew J P, Burke K M 1996 Phys. Rev. Lett. 77 3865
[52] [53] [54] Dudarev S L, Botton G A, Savarsov S Y 1998 Phys. Rev. B 57 1505
[55] Jia L C, Wu C C, Han S, Yao N, Li Y Y, Li Z Z, Chi B, Pu J, Li J 2011 J. Alloy. Compd. 509 6067
[56] [57] Kresse G, Furthermuller J 1996 Phys. Rev. B 54 11169
[58] [59] Monkhorst H J, Pack J D 1998 Phys. Rev. B 13 5188
[60] [61] Zhao X W, Xi H P, Liao Q W 2013 Acta Phys.-Chim. Sin. 29 2232
[62] [63] Liu Y M, Liang W, Zhang W G, Zhang J J, Han P D 2013 Solid State Commun. 164 27
-
[1] Wang P, Grätze M 2003 Nat. Mater. 21 402
[2] [3] Hagfeldt A, Grätzel M 1995 Chem. Rev. 95 49
[4] [5] Mills A, Hunte S L 1997 J. Photoch. Photobio. A 08 1
[6] [7] [8] Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Str. 1061 160
[9] [10] Yang K S, Dai Y, Huang B B 2009 Chem. Phys. Chem. 10 2327
[11] Zhu Y T, Wei W, Dai Y, Huang B B 2012 Appl. Surf. Sci. 258 4806
[12] [13] Wang Y J, Wang C Y, Wang S Y 2013 Chin. Phys. B 03 364
[14] [15] Li W, Wei S H, Duan X M 2014 Chin. Phys. B 02???? 465
[16] [17] Maeda M, Yamada T 2007 J. Phys.:Conf. Ser. 61 755
[18] [19] [20] Sreethawong T, Yoshikawa S 2005 Photocatalys. Catal. Commun. 6 661
[21] [22] Rodríguez J A, Evans J, Graciano J, Park J B, Liu P, Hrbek J, Sanz J F 2009 J. Phys. Chem. C 113 7364
[23] [24] Karunakaran C, Abiramasundari G, Gomathisankar P 2010 J. Colloid Interf. Sci. 352 68
[25] Zhao X W, Xi H P, Liao Q W 2013 Acta Phys. -Chim. Sin. 29 2232
[26] [27] [28] Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 [李宗宝, 王霞, 贾礼超 2013 62 203103]
[29] [30] Sakthivel R, Ntho T, Witcomb M, Scurrell M S 2009 Catal. Lett. 130 341
[31] [32] Zhang X J, Zhang G F, Jin H X, Zhu L D, Liu Q J 2013 Acta Phys. Sin. 62 017102 [张学军, 张光富, 金辉霞, 朱良迪, 柳清菊 2013 62 017102]
[33] [34] Liu C, Tang X H, Mo C H, Qiang Z M 2008 J. Solid State Chem. 181 913
[35] [36] Obata K, Irie H, Hashimoto K 2007 Chem. Phys. 339 124
[37] Yang G D, Jiang Z, Shi H H, Jones M O, Xiao T C, Edwards P P, Yan Z F 2010 Appl. Catal. B 96 458
[38] [39] Morikawa T, Irokawa Y, Ohwaki T 2006 Appl. Catal. A 314 123
[40] [41] [42] Song K, Zhou J, Bao J, Feng Y 2008 J. Am. Ceram. Soc. 91 1369
[43] Wang C, Hu Q Q, Huang J Q 2014 Appl. Surf. Sci. 292 161
[44] [45] [46] Pham T D, Lee B K 2014 Appl. Surf. Sci. 296 15
[47] Finazzi E, Valentin C D, Selloni A, Pacchioni G 2007 J. Phys. Chem. C 111 9275
[48] [49] Lee J H, Hevia D F, Selloni A 2013 Phys. Rev. Lett. 110 5
[50] [51] Perdew J P, Burke K M 1996 Phys. Rev. Lett. 77 3865
[52] [53] [54] Dudarev S L, Botton G A, Savarsov S Y 1998 Phys. Rev. B 57 1505
[55] Jia L C, Wu C C, Han S, Yao N, Li Y Y, Li Z Z, Chi B, Pu J, Li J 2011 J. Alloy. Compd. 509 6067
[56] [57] Kresse G, Furthermuller J 1996 Phys. Rev. B 54 11169
[58] [59] Monkhorst H J, Pack J D 1998 Phys. Rev. B 13 5188
[60] [61] Zhao X W, Xi H P, Liao Q W 2013 Acta Phys.-Chim. Sin. 29 2232
[62] [63] Liu Y M, Liang W, Zhang W G, Zhang J J, Han P D 2013 Solid State Commun. 164 27
计量
- 文章访问数: 6702
- PDF下载量: 578
- 被引次数: 0