-
Non-Abelian gauge field is the fundamental element of the standard model. Non-Abelian chiral kinetic theory can be used to describe how the chiral fermions in standard model transport in a non-equilibrium system. In our previous work, we decomposed the non-Abelian chiral kinetic equations into color singlet and multiplet in the $SU(N)$ color space. In this formalism, the chiral kinetic equations preserve the gauge symmetry in a very apparent way. However, sometimes we need to describe the microscopic process of the specific color degree, e.g. the color connection in the hadronization stage. In order to describe such a process, it will be more convenient to decompose the non-Abelian chiral kinetic equations in the Cartan-Weyl basis.In this work, we choose the matrix elements of the Wigner function in fundamental representation of color space as the direct variables and decompose the gauge field or strength tensor field in the Cartan-Weyl basis. By using the covariant gradient expansion, we decompose the non-Abelian chiral kinetic equations into the coupled kinetic equations for diagonal distribution function and non-diagonal distribution function up to the first order. When only diagonal elements exist in the gauge field with non-diagonal elements and diagonal elements decoupled, the non-Ableian chiral kinetic equation will be reduced to the form in the Abelian case. When the non-diagonal elements of the gauge field are present, the kinetic equations are totally tangled between diagonal distribution function and non-diagonal distribution function. Especially, the $0$ th-order non-diagonal distribution function could induce the$1$ st-order diagonal Wigner function, and the$0$ th-order diagonal distribution function could also induce the$1$ st-order non-diagonal Wigner function.-
Keywords:
- non-Abelian field /
- Wigner function /
- chiral kinetic equation
[1] Vilenkin A 1980 Phys. Rev. D 22 3080
Google Scholar
[2] Kharzeev D E, McLerran L D, Warringa H J 2008 Nucl. Phys. A 803 227
Google Scholar
[3] Fukushima K, Kharzeev D E, Warringa H J 2008 Phys. Rev. D 78 074033
Google Scholar
[4] Vilenkin A 1978 Phys. Lett. 80B 150
[5] Kharzeev D, Zhitnitsky A 2007 Nucl. Phys. A 797 67
Google Scholar
[6] Erdmenger J, Haack M, Kaminski M, Yarom A 2009 JHEP 0901 055
[7] Banerjee N, Bhattacharya J, Bhattacharyya S, Dutta S, Loganayagam R, Surowka P 2011 JHEP 1101 094
[8] Son D T, Zhitnitsky A R 2004 Phys. Rev. D 70 074018
Google Scholar
[9] Metlitski M A, Zhitnitsky A R 2005 Phys. Rev. D 72 045011
Google Scholar
[10] Gao J H, Liang Z T, Pu S, Wang Q, Wang X N 2012 Phys. Rev. Lett. 109 232301
Google Scholar
[11] Stephanov M A, Yin Y 2012 Phys. Rev. Lett. 109 162001
Google Scholar
[12] Son D T, Yamamoto N 2013 Phys. Rev. D 87 085016
Google Scholar
[13] Chen J W, Pu S, Wang Q, Wang X N 2013 Phys. Rev. Lett. 110 262301
Google Scholar
[14] Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 89 096002
Google Scholar
[15] Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 90 076007
Google Scholar
[16] Chen J Y, Son D T, Stephanov M A, Yee H U, Yin Y 2014 Phys. Rev. Lett. 113 182302
Google Scholar
[17] Chen J Y, Son D T, Stephanov M A 2015 Phys. Rev. Lett. 115 021601
Google Scholar
[18] Hidaka Y, Pu S, Yang D L 2017 Phys. Rev. D 95 091901
Google Scholar
[19] Mueller N, Venugopalan R 2018 Phys. Rev. D 97 051901
Google Scholar
[20] Huang A, Shi S, Jiang Y, Liao J, Zhuang P 2018 Phys. Rev. D 98 036010
Google Scholar
[21] Gao J H, Liang Z T, Wang Q, Wang X N 2018 Phys. Rev. D 98 036019
Google Scholar
[22] Liu Y C, Gao L L, Mameda K, Huang X G 2019 Phys. Rev. D 99 085014
Google Scholar
[23] Lin S, Shukla A 2019 JHEP 6 060
[24] Gao L L, Huang X G 2022 Chin. Phys. Lett. 39 021101
Google Scholar
[25] Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701
Google Scholar
[26] Sun Y, Ko C M, Li F 2016 Phys. Rev. C 94 045204
[27] Sun Y, Ko C M 2017 Phys. Rev. C 95 034909
Google Scholar
[28] Sun Y, Ko C M 2017 Phys. Rev. C 96 024906
Google Scholar
[29] Sun Y, Ko C M 2018 Phys. Rev. C 98 014911
Google Scholar
[30] Sun Y, Ko C M 2019 Phys. Rev. C 99 011903
Google Scholar
[31] Zhou W H, Xu J 2018 Phys. Rev. C 98 044904
Google Scholar
[32] Zhou W H, Xu J 2019 Phys. Lett. B 798 134932
Google Scholar
[33] Liu S Y F, Sun Y, Ko C M 2020 Phys. Rev. Lett. 125 062301
Google Scholar
[34] Stone M, Dwivedi V 2013 Phys. Rev. D 88 045012
Google Scholar
[35] Akamatsu Y, Yamamoto N 2014 Phys. Rev. D 90 125031
Google Scholar
[36] Hayata T, Hidaka Y 2017 PTEP 2017 073I01
[37] Mueller N, Venugopalan R 2019 Phys. Rev. D 99 056003
Google Scholar
[38] Luo X L, Gao J H 2021 JHEP 11 115
[39] Yang D L 2022 JHEP 06 140
[40] Heinz U W 1983 Phys. Rev. Lett. 51 351
Google Scholar
[41] Elze H T, Gyulassy M, Vasak D 1986 Phys. Lett. B 177 402
Google Scholar
[42] Elze H T, Gyulassy M, Vasak D 1986 Nucl. Phys. B 276 706
Google Scholar
[43] Elze H T, Heinz U W 1989 Phys. Rept. 183 81
Google Scholar
[44] Ezawa Z F, Iwazaki A 1982 Phys. Rev. D 25 2681
[45] Ezawa Z F, Iwazaki A 1982 Phys. Rev. D 26 631
[46] Gyulassy M, Iwazaki A 1985 Phys. Lett. B 165 157
Google Scholar
[47] Huang X G, Mitkin P, Sadofyev A F, Speranza E 2020 JHEP 10 117
[48] Hattori K, Hidaka Y, Yamamoto N, Yang D L 2021 JHEP 2 1
[49] Lin S 2022 Phys. Rev. D 105 076017
Google Scholar
-
[1] Vilenkin A 1980 Phys. Rev. D 22 3080
Google Scholar
[2] Kharzeev D E, McLerran L D, Warringa H J 2008 Nucl. Phys. A 803 227
Google Scholar
[3] Fukushima K, Kharzeev D E, Warringa H J 2008 Phys. Rev. D 78 074033
Google Scholar
[4] Vilenkin A 1978 Phys. Lett. 80B 150
[5] Kharzeev D, Zhitnitsky A 2007 Nucl. Phys. A 797 67
Google Scholar
[6] Erdmenger J, Haack M, Kaminski M, Yarom A 2009 JHEP 0901 055
[7] Banerjee N, Bhattacharya J, Bhattacharyya S, Dutta S, Loganayagam R, Surowka P 2011 JHEP 1101 094
[8] Son D T, Zhitnitsky A R 2004 Phys. Rev. D 70 074018
Google Scholar
[9] Metlitski M A, Zhitnitsky A R 2005 Phys. Rev. D 72 045011
Google Scholar
[10] Gao J H, Liang Z T, Pu S, Wang Q, Wang X N 2012 Phys. Rev. Lett. 109 232301
Google Scholar
[11] Stephanov M A, Yin Y 2012 Phys. Rev. Lett. 109 162001
Google Scholar
[12] Son D T, Yamamoto N 2013 Phys. Rev. D 87 085016
Google Scholar
[13] Chen J W, Pu S, Wang Q, Wang X N 2013 Phys. Rev. Lett. 110 262301
Google Scholar
[14] Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 89 096002
Google Scholar
[15] Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 90 076007
Google Scholar
[16] Chen J Y, Son D T, Stephanov M A, Yee H U, Yin Y 2014 Phys. Rev. Lett. 113 182302
Google Scholar
[17] Chen J Y, Son D T, Stephanov M A 2015 Phys. Rev. Lett. 115 021601
Google Scholar
[18] Hidaka Y, Pu S, Yang D L 2017 Phys. Rev. D 95 091901
Google Scholar
[19] Mueller N, Venugopalan R 2018 Phys. Rev. D 97 051901
Google Scholar
[20] Huang A, Shi S, Jiang Y, Liao J, Zhuang P 2018 Phys. Rev. D 98 036010
Google Scholar
[21] Gao J H, Liang Z T, Wang Q, Wang X N 2018 Phys. Rev. D 98 036019
Google Scholar
[22] Liu Y C, Gao L L, Mameda K, Huang X G 2019 Phys. Rev. D 99 085014
Google Scholar
[23] Lin S, Shukla A 2019 JHEP 6 060
[24] Gao L L, Huang X G 2022 Chin. Phys. Lett. 39 021101
Google Scholar
[25] Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701
Google Scholar
[26] Sun Y, Ko C M, Li F 2016 Phys. Rev. C 94 045204
[27] Sun Y, Ko C M 2017 Phys. Rev. C 95 034909
Google Scholar
[28] Sun Y, Ko C M 2017 Phys. Rev. C 96 024906
Google Scholar
[29] Sun Y, Ko C M 2018 Phys. Rev. C 98 014911
Google Scholar
[30] Sun Y, Ko C M 2019 Phys. Rev. C 99 011903
Google Scholar
[31] Zhou W H, Xu J 2018 Phys. Rev. C 98 044904
Google Scholar
[32] Zhou W H, Xu J 2019 Phys. Lett. B 798 134932
Google Scholar
[33] Liu S Y F, Sun Y, Ko C M 2020 Phys. Rev. Lett. 125 062301
Google Scholar
[34] Stone M, Dwivedi V 2013 Phys. Rev. D 88 045012
Google Scholar
[35] Akamatsu Y, Yamamoto N 2014 Phys. Rev. D 90 125031
Google Scholar
[36] Hayata T, Hidaka Y 2017 PTEP 2017 073I01
[37] Mueller N, Venugopalan R 2019 Phys. Rev. D 99 056003
Google Scholar
[38] Luo X L, Gao J H 2021 JHEP 11 115
[39] Yang D L 2022 JHEP 06 140
[40] Heinz U W 1983 Phys. Rev. Lett. 51 351
Google Scholar
[41] Elze H T, Gyulassy M, Vasak D 1986 Phys. Lett. B 177 402
Google Scholar
[42] Elze H T, Gyulassy M, Vasak D 1986 Nucl. Phys. B 276 706
Google Scholar
[43] Elze H T, Heinz U W 1989 Phys. Rept. 183 81
Google Scholar
[44] Ezawa Z F, Iwazaki A 1982 Phys. Rev. D 25 2681
[45] Ezawa Z F, Iwazaki A 1982 Phys. Rev. D 26 631
[46] Gyulassy M, Iwazaki A 1985 Phys. Lett. B 165 157
Google Scholar
[47] Huang X G, Mitkin P, Sadofyev A F, Speranza E 2020 JHEP 10 117
[48] Hattori K, Hidaka Y, Yamamoto N, Yang D L 2021 JHEP 2 1
[49] Lin S 2022 Phys. Rev. D 105 076017
Google Scholar
Catalog
Metrics
- Abstract views: 3555
- PDF Downloads: 77
- Cited By: 0