Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress on the experimental search for the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave

Shou Qi-Ye Zhao Jie Xu Hao-Jie Li Wei Wang Gang Tang Ai-Hong Wang Fu-Qiang

Citation:

Progress on the experimental search for the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave

Shou Qi-Ye, Zhao Jie, Xu Hao-Jie, Li Wei, Wang Gang, Tang Ai-Hong, Wang Fu-Qiang
PDF
HTML
Get Citation
  • In quantum chromodynamics, the interactions of quarks with the topological gluon field can lead to nonconservation of local parity (P) and conjugated parity (CP) , which provides a solution to the strong CP problem and a possibility to explain the asymmetry of matter-antimatter in the current universe. Under the action of a strong magnetic field, the nonconservation of P and CP can lead to the separation of particles according to their electric charges, which is called the chiral magnetic effect (CME). An observation of the CME-induced charge separation will confirm several fundamental properties of quantum chromodynamics (QCD), namely, approximate chiral symmetry restoration, topological charge fluctuation, and local parity violation. In relativistic heavy-ion collisions, there are other chiral anomalous effects similar to the CME, such as the chiral vortical effect (CVE) and the chiral magnetic wave (CMW). This review briefly summarizes the current progress of experimental research on the CME, CVE, and CMW in relativistic heavy-ion collisions.
      Corresponding author: Zhao Jie, jie_zhao@fudan.edu.cn ; Xu Hao-Jie, haojiexu@zjhu.edu.cn ; Li Wei, wl33@rice.edu ; Wang Gang, gwang@physics.ucla.edu ; Tang Ai-Hong, aihong@bnl.gov ; Wang Fu-Qiang, fqwang@purdue.edu
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275053, 11975078, 12275082, 12035006, 12075085, 12147219), the Shanghai Rising-Star Program, China (Grant No. 20QA1401500), the National Key R&D Program of China (Grant No. 2022YFA1604900), and the U.S. Department of Energy (Grant Nos. DE-FG02-88ER40424, DE-AC02-98CH10886, DE-FG02-89ER40531, DE-SC0012910)
    [1]

    Belavin A A, Polyakov A M, Schwartz A S, Tyupkin Y S 1975 Phys. Lett. B 59 85Google Scholar

    [2]

    Callan C G, Dashen R F, Gross D J 1976 Phys. Lett. B 63 334Google Scholar

    [3]

    Hooft G T 1976 Phys. Rev. D 14 3432

    [4]

    Schäfer T, Shuryak E V 1998 Rev. Mod. Phys. 70 323Google Scholar

    [5]

    Kharzeev D E, Levin E M. 2015 Phys. Rev. Lett. 114 242001Google Scholar

    [6]

    Adler S L 1969 Phys. Rev. 177 2426Google Scholar

    [7]

    Bell J S, Jackiw R 1969 Nuovo Cim. A 60 74

    [8]

    Kharzeev D E 2006 Phys. Lett. B 633 260Google Scholar

    [9]

    Kharzeev D E, McLerran L D, Warringa H J 2008 Nucl. Phys. A2008 227

    [10]

    Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosic I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D, Valla T 2016 Nat. Phys. 12 550Google Scholar

    [11]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [12]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [13]

    Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F, Huang X C, Zhao L X 2015 Phys. Rev. X 5 031023

    [14]

    Kharzeev D E, Liao J F, Voloshin S A, Wang G 2016 Prog. Part. Nucl. Phys. 88 1Google Scholar

    [15]

    Zhao J 2018 Int. J. Mod. Phys. A 33 1830010Google Scholar

    [16]

    Zhao J, Tu Z, Wang F Q 2018 Nucl. Phys. Rev. 35 225

    [17]

    Zhao J, Wang F Q 2019 Prog. Part. Nucl. Phys. 107 200Google Scholar

    [18]

    Li W, Wang G 2020 Ann. Rev. Nucl. Part. Sci. 70 293Google Scholar

    [19]

    Kharzeev D E, Liao J F 2021 Nat. Rev. Phys. 3 55

    [20]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. 2009 Phys. Rev. Lett. 103 251601Google Scholar

    [21]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. 2010 Phys. Rev. C 81 054908Google Scholar

    [22]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2014 Phys. Rev. Lett. 113 052302Google Scholar

    [23]

    Abelev B I, Adam J , Adamova D, et al. 2013 Phys. Rev. Lett. 110 012301Google Scholar

    [24]

    Voloshin S A 2004 Phys. Rev. C 70 057901Google Scholar

    [25]

    Pratt S, Schlichting S, Gavin S 2011 Phys. Rev. C 84 024909Google Scholar

    [26]

    Bzdak A, Koch V, Liao J F 2013 Lect. Notes Phys. 871 503

    [27]

    Schlichting S, Pratt S 2011 Phys. Rev. C 83 014913Google Scholar

    [28]

    Lin Z W, Ko C M, Li B A, Zhang B, Pal S 2005 Phys. Rev. C 72 064901Google Scholar

    [29]

    Lin Z W 2014 Phys. Rev. C 90 014904Google Scholar

    [30]

    Lin Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [31]

    Zhang H X, Xiao Y X, Kang J W, Zhang B W 2022 Nucl. Sci. Tech. 33 150Google Scholar

    [32]

    Khachatryan V, et al. 2017 Phys. Rev. Lett. 118 122301Google Scholar

    [33]

    Adam J, et al. 2019 Phys. Lett. B 798 134975Google Scholar

    [34]

    Zhao J, Feng Y C, Li H L, Wang F Q 2020 Phys. Rev. C 101 034912Google Scholar

    [35]

    Adamczyk L, et al. 2014 Phys. Rev. C 89 044908Google Scholar

    [36]

    Tu B In Poster Given at 25th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2015) Kobe, Japan, September 27-October 3, 2015

    [37]

    Acharya S, et al. 2018 Phys. Lett. B 777 151Google Scholar

    [38]

    Sirunyan A M, et al. 2018 Phys. Rev. C 97 044912Google Scholar

    [39]

    Wang F Q, Zhao J 2017 Phys. Rev. C 95 051901 (RGoogle Scholar

    [40]

    Zhao J, Li H L, Wang F Q 2019 Eur. Phys. J. C 79 168Google Scholar

    [41]

    Abdallah M S, et al. 2022 Phys. Rev. C 106 034908Google Scholar

    [42]

    Xu H J, Zhao J, Wang X B, Li H L, Lin Z W, Shen C W, Wang F Q 2018 Chin. Phys. C 42 084103Google Scholar

    [43]

    Abdallah M S, et al. 2022 Phys. Rev. Lett. 128 092301Google Scholar

    [44]

    Abdallah M, et al. 2022 Phys. Rev. C 105 014901Google Scholar

    [45]

    Voloshin S A 2010 Phys. Rev. Lett. 105 172301Google Scholar

    [46]

    Deng W T, Huang X G, Ma G L, Wang G 2016 Phys. Rev. C 94 041901Google Scholar

    [47]

    Koch V, Schlichting S, Skokov V, Sorensen P, Thomas J, Voloshin S, Wang G, Yee H U 2017 Chin. Phys. C 41 072001Google Scholar

    [48]

    Adam J, et al. 2021 Nucl. Sci. Tech. 32 48Google Scholar

    [49]

    Choudhury S, et al. 2022 Chin. Phys. C 46 014101Google Scholar

    [50]

    Xu H J, Wang X B, Li H L, Zhao J, Lin Z W, Shen C W, Wang F Q 2018 Phys. Rev. Lett. 121 022301Google Scholar

    [51]

    Li H L, Xu H J, Zhou Y, Wang X B, Zhao J, Chen L W, Wang F Q 2020 Phys. Rev. Lett. 125 222301Google Scholar

    [52]

    Feng Y C 2023 EPJ Web Conf. 276 06013

    [53]

    Kharzeev D E, Liao J F, Shi S Z 2022 Phys. Rev. C 106 L051903Google Scholar

    [54]

    Feng Y C, Lin Y F, Zhao J, Wang F Q 2021 Phys. Lett. B 820 136549Google Scholar

    [55]

    Tang A H 2020 Chin. Phys. C 44 054101Google Scholar

    [56]

    Shi S Z, Jiang Y, Lilleskov E, Liao J F 2018 Annals Phys. 394 50Google Scholar

    [57]

    Jiang Y, Shi S Z, Yin Y, Liao J F 2018 Chin. Phys. C 42 011001Google Scholar

    [58]

    Shi S Z, Zhang H, Hou D F, Liao J F 2020 Phys. Rev. Lett. 125 242301Google Scholar

    [59]

    Ajitanand N N, Lacey R A, Taranenko A, Alexander J M 2011 Phys. Rev. C 83 011901Google Scholar

    [60]

    Magdy N, Shi S Z, Liao J F, Ajitanand N N, Lacey R A 2018 Phys. Rev. C 97 061901Google Scholar

    [61]

    Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar

    [62]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [63]

    赵新丽, 马国亮, 马余刚 2023 72 112502Google Scholar

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. 72 112502Google Scholar

    [64]

    Kharzeev D E, Son D T 2011 Phys. Rev. Lett. 106 062301Google Scholar

    [65]

    Jiang Y, Lin Z W, Liao J F 2016 Phys. Rev. C 94 044910Google Scholar

    [66]

    Baznat M, Gudima M, Sorin A, Teryaev O 2016 Phys. Rev. C 93 031902Google Scholar

    [67]

    Zhao F 2014 Nucl. Phys. A 931 746Google Scholar

    [68]

    Zhao J 2017 EPJ Web Conf. 141 01010Google Scholar

    [69]

    Wen L W 2017 Nucl. Phys. A 967 756Google Scholar

    [70]

    Son D T, Zhitnitsky A R 2004 Phys. Rev. D 70 074018Google Scholar

    [71]

    Metlitski M A, Zhitnitsky A R 2005 Phys. Rev. D 72 045011Google Scholar

    [72]

    Burnier Y, Kharzeev D E, Liao J F, Yee H U 2011 Phys. Rev. Lett. 107 052303Google Scholar

    [73]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2015 Phys. Rev. Lett. 114 252302Google Scholar

    [74]

    Adam J, et al. 2016 Phys. Rev. C 93 044903Google Scholar

    [75]

    Bzdak A, Boek P 2013 Phys. Lett. B 726 239

    [76]

    STAR Collaboration Search for the Chiral Magnetic Wave Using Anisotropic Flow of Identified Particles at RHIC arXiv: 2210.14027

    [77]

    Sirunyan A M, et al. 2019 Phys. Rev. C 100 064908Google Scholar

    [78]

    Xu H J, Zhao J, Feng Y C, Wang F Q 2021 Nucl. Phys. A 1005 121770Google Scholar

    [79]

    Ma G L 2014 Phys. Lett. B 735 383Google Scholar

    [80]

    Voloshin S A, Belmont R 2014 Nucl. Phys. A 931 992Google Scholar

    [81]

    Xu H J, Zhao J, Feng Y C, Wang F Q 2020 Phys. Rev. C 101 014913Google Scholar

    [82]

    Wu W Y, Wang C Z, Shou Q Y, Ma Y G, Zheng L 2021 Phys. Rev. C 103 034906Google Scholar

    [83]

    Wang C Z, Wu W Y, Shou Q Y, Ma G L, Ma Y G, Zhang S 2021 Phys. Lett. B 820 136580Google Scholar

    [84]

    Wu W Y 2023 EPJ Web Conf. 276 01001

    [85]

    Hatta Y, Monnai A, Xiao B W 2016 Nucl. Phys. A 947 155Google Scholar

  • 图 1  RHIC-STAR合作组于2009年左右对$ \gamma_{112} $关联函数的首次测量结果[20,21]. 粗实线和虚线表示HIJING模型计算的三粒子关联背景贡献. 碰撞中心度从左到右增加; 0%对应于中心碰撞

    Figure 1.  First measurement of the $ \gamma_{112} $ correlator from RHIC-STAR experiment around 2009[20,21]. The thick solid (Au+Au) and dashed (Cu+Cu) lines represent HIJING calculations of the contributions from three-particle correlations. Collision centrality increases from left to right. 0% corresponds to the most central collisions

    图 2  RHIC-STAR 7.7—200 GeV Au+Au以及LHC-ALICE 2.76 TeV Pb+Pb碰撞中$ \gamma_{112} $关联函数的中心度依赖性[20-23]. 灰色线是MEVSIM模型估计的与电荷无关的背景贡献

    Figure 2.  $ \gamma_{112} $ correlator as a function of centrality for Au+Au collisions at 7.7–200 GeV from RHIC-STAR, and for Pb+Pb collisions at 2.76 TeV from LHC-ALICE[20-23]. Gray curves are the charge-independent results from MEVSIM calculations

    图 3  RHIC-STAR 7.7—200 GeV Au+Au以及LHC-ALICE 2.76 TeV Pb+Pb碰撞中$ \kappa_{112} $关联函数的中心度依赖性[20-23]. 灰色粗实线是AMPT模型估计的与CME无关的背景贡献[28-30]

    Figure 3.  $ \kappa_{112} $ correlator as a function of centrality for Au+Au collisions at 7.7–200 GeV from RHIC-STAR, and for Pb+Pb collisions at 2.76 TeV from LHC-ALICE[20-23]. Gray curves are the non-CME background estimations from AMPT[28-30]

    图 4  (a) LHC-CMS合作组在5.02 TeV p+Pb和 Pb+Pb碰撞中测量的$ \gamma_{112} $关联函数随多重数的依赖性[32]; (b) RHIC-STAR合作组测量的小系统p+Au, d+Au碰撞中$ \gamma_{112} $关联函数与Au+Au碰撞结果的对比[33]. 图中的灰色标记代表实验测量的系统误差

    Figure 4.  (a) $ \gamma_{112} $ as a function of N in p+Pb and Pb+Pb collisions at 5.02 TeV from LHC-CMS collaboration[32]; (b)$ \gamma_{112} $ as a function of N in p+Au, d+Au and Au+Au collisions at 200 GeV from RHIC-STAR collaboration[33]. Systematic uncertainties are indicated by the shaded regions

    图 5  RHIC-STAR合作组通过事件形状筛选方法在200 GeV Au+Au碰撞中测量Δ关联函数与每个事件椭球形状观测量$ v_2^{\rm obs} $的关系[35]

    Figure 5.  Charge multiplicity asymmetry correlations (Δ) as a function of event-by-event $ v_2^{\rm obs} $ from 200 GeV Au+Au collisions[35]

    图 6  LHC-ALICE合作组(a)通过事件形状筛选方法在2.76 TeV Pb+Pb碰撞中测量的按粒子多重数缩放的$ \Delta\gamma_{112} $关联函数($\Delta\gamma_{112} \cdot {\rm{d}}N_{\rm ch}/{\rm{d}}\eta$)在不同中心度下随$ v_{2} $的关系, (b)通过事件形状筛选方法比较关联函数以及不同模型下磁场强度和$ v_{2} $的关系, 提取的手征磁效应的贡献[37]

    Figure 6.  (a) Charge-particle density scaled correlator ($\Delta\gamma_{112} \cdot {\rm{d}}N_{\rm ch}/{\rm{d}}\eta$) as a function of $ v_{2} $ for shape selected events in 2.76 TeV Pb+Pb collisions from LHC-ALICE; (b) extracted CME fraction ($ f_{\rm CME} $) by comparing the correlator and magnetic field dependence on $ v_{2} $ with different models[37]

    图 7  LHC-CMS合作组(a)通过事件形状筛选方法在5.02 TeV Pb+Pb碰撞中测量的按$ \Delta\delta $缩放的关联函数($ \Delta\gamma_{112}/\Delta\delta $)在不同中心度下随$ v_{2} $的关系, (b)通过事件形状筛选方法研究关联函数在$ v_{2}=0 $的结果, 提取的Pb+Pb以及p+Pb碰撞中手征磁效应的贡献[38]

    Figure 7.  (a) Scaled correlator, $ \Delta\gamma_{112}/\Delta\delta $, as a function of $ v_{2} $ evaluated with the ESE method, for different multiplicity ranges in Pb+Pb collisions from LHC-CMS; (b) extracted CME contributions, $ v_{2} $-independent component, in Pb+Pb and p+Pb collisions[38]

    图 8  RHIC-STAR合作组(a)通过事件形状筛选方法选择的不同$ q_{2} $事件(A: large $ q_{2} $, B: small $ q_{2} $)中$ \Delta\gamma_{112} $关联函数与不变质量的关系, (b) A-B与无事件形状筛选的测量结果的比较[41]

    Figure 8.  (a) $ \Delta\gamma_{112} $ as functions of mass in different $ q_{2} $ events (A: large $ q_{2} $, B: small $ q_{2} $) using the event shape selection method; (b) inclusive measurement compared with the A-B[41]

    图 9  RHIC-STAR合作组200 GeV Au+Au实验中通过比较旁观者平面和参与者平面测量结果而提取的手征磁效应信号百分比(a), 以及其信号大小(b)[43]

    Figure 9.  (a) Extracted CME fraction ($ f_{\rm CME} $) and (b) CME signal ($ \Delta\gamma_{\rm CME} $) using the spectator and participant planes method from RHIC-STAR[43]

    图 10  RHIC-STAR合作组200 GeV 同位异素核Ru+Ru和Zr+Zr实验中的关联函数结果的比较[44]

    Figure 10.  Ratio of different observables between 200 GeV isobar Ru+Ru and Zr+Zr collisions from RHIC-STAR[44]

    图 11  玩具模型显示$ r_{\mathrm{rest}} $$R_{\rm{B}}$在不同CME强度下($ a_1 $)和共振态粒子椭圆流的关系[55]

    Figure 11.  $ r_{\mathrm{rest}} $ (Upper) and $ R_{\rm{B}} $ (Bottom) as functions of resonance $ v_{2} $ with different CME strength ($ a_1 $) using the Toy model simulation[55]

    图 12  基于EBE-AVFD模拟数据计算的$ \Delta \gamma_{112} $ (a), $ \sigma^{-1}_{R2} $ ($ \sigma_{R2} $为R关联函数宽度) (c) 和 $ r_{\mathrm{lab}} $ (e) 关于$ n_{5}/s $的函数. $ n_{5}/s $在AVFD里表示原始植入的CME强度. 该计算是针对30%—40% 中心度同位异素$ \sqrt{s_{\rm NN}} = 200 $ GeV核核对撞. (b), (d), (f)观测量在Ru+Ru对Zr+Zr比值[49]

    Figure 12.  $ \Delta \gamma_{112} $ (a), $ \sigma^{-1}_{R2} $ (c) and $ r_{\mathrm{lab}} $ (e) as functions of $ n_{5}/s $ in EBE-AVFD model simulation. (b), (d), (f) Corresponding ratios between Ru+Ru and Zr+Zr[49]

    图 13  (a) STAR实验200 GeV Au+Au对撞中$ v_2^\pm $-$ A_{\rm ch} $的关系和(b)$ \Delta v_2 $-$ A_{\rm ch} $的关系[73]; (c) ALICE实验2.76 TeV Pb+ Pb对撞中$ \Delta v_2 $-$ A_{\rm ch} $的关系 [74]

    Figure 13.  (a)$ v_2^\pm $, (b) $ \Delta v_2 $ as functions of $ A_{\rm ch} $ in 200 GeV Au+Au collisions from STAR [73]; (c) $ \Delta v_2 $ as functions of $ A_{\rm ch} $ in 2.76 TeV Pb+Pb collisions from ALICE[74]

    图 14  RHIC和LHC不同碰撞系统和能量下$ \Delta v_2 $-$ A_{\rm ch} $斜率的中心度依赖[73,74]

    Figure 14.  Slopes of the $ \Delta v_2 $-$ A_{\rm ch} $ as functions of centrality in different collisions systems and energies from RHIC and LHC[73,74]

    图 15  (a) STAR实验200 GeVAu+Au对撞和(b) CMS实验5.02 TeV Pb+Pb对撞中观测到的$ r_2 $$ r_3 $斜率, 在误差范围内基本一致[76,77]

    Figure 15.  Measured $ r_2 $, $ r_3 $ slopes as functions of centrality in 200 GeV Au+Au collisions from STAR (a), and in 5.02 TeV Pb+Pb collisions from CMS (b), within the uncertainties, the slopes of $ r_2 $, $ r_3 $ are consistent with each other[76,77]

    图 16  (a) STAR实验200 GeVAu+Au、U+U、p+Au和d+Au对撞和(b) CMS实验5.02 TeV Pb+Pb和p+Pb对撞中观测到的$ r_2 $斜率[76,77]

    Figure 16.  Measured $ r_2 $ slopes as functions of multiplicity (a) in small system collisions of 200 GeV p+A, d+Au compared with Au+Au and U+U from STAR, and (b) in 5.02 TeV p+Pb and Pb+Pb collisions from CMS[76,77]

    图 17  ALICE实验利用“事件形状筛选”方法得到(a)观测量和$ v_2 $显著的线性关联, 继而提取出(b) CMW信号在观测量中的占比[84]

    Figure 17.  Covariance of $ \Delta v_2 $ and $ A_{\rm ch} $ ($ \Delta \rm{Int.\; Cov.} $) as functions of $ v_2 $ from the ESE method (a) and (b) the corresponding extracted CMW fraction[84]

    图 18  (a) STAR实验200 GeVAu+Au对撞和(b) ALICE实验5.02 TeV Pb+Pb对撞中可鉴别强子π, K, p的$ r_2 $斜率, π和K的结果在误差范围内基本一致[76,84]

    Figure 18.  Measured $ r_2 $ slopes of identified particles (π, K, p) as functions of centrality in (a) 200 GeV Au+Au collisions from STAR, and (b) in 5.02 TeV Pb+Pb collisions from ALICE[76,84]

    Baidu
  • [1]

    Belavin A A, Polyakov A M, Schwartz A S, Tyupkin Y S 1975 Phys. Lett. B 59 85Google Scholar

    [2]

    Callan C G, Dashen R F, Gross D J 1976 Phys. Lett. B 63 334Google Scholar

    [3]

    Hooft G T 1976 Phys. Rev. D 14 3432

    [4]

    Schäfer T, Shuryak E V 1998 Rev. Mod. Phys. 70 323Google Scholar

    [5]

    Kharzeev D E, Levin E M. 2015 Phys. Rev. Lett. 114 242001Google Scholar

    [6]

    Adler S L 1969 Phys. Rev. 177 2426Google Scholar

    [7]

    Bell J S, Jackiw R 1969 Nuovo Cim. A 60 74

    [8]

    Kharzeev D E 2006 Phys. Lett. B 633 260Google Scholar

    [9]

    Kharzeev D E, McLerran L D, Warringa H J 2008 Nucl. Phys. A2008 227

    [10]

    Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosic I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D, Valla T 2016 Nat. Phys. 12 550Google Scholar

    [11]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [12]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [13]

    Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F, Huang X C, Zhao L X 2015 Phys. Rev. X 5 031023

    [14]

    Kharzeev D E, Liao J F, Voloshin S A, Wang G 2016 Prog. Part. Nucl. Phys. 88 1Google Scholar

    [15]

    Zhao J 2018 Int. J. Mod. Phys. A 33 1830010Google Scholar

    [16]

    Zhao J, Tu Z, Wang F Q 2018 Nucl. Phys. Rev. 35 225

    [17]

    Zhao J, Wang F Q 2019 Prog. Part. Nucl. Phys. 107 200Google Scholar

    [18]

    Li W, Wang G 2020 Ann. Rev. Nucl. Part. Sci. 70 293Google Scholar

    [19]

    Kharzeev D E, Liao J F 2021 Nat. Rev. Phys. 3 55

    [20]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. 2009 Phys. Rev. Lett. 103 251601Google Scholar

    [21]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. 2010 Phys. Rev. C 81 054908Google Scholar

    [22]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2014 Phys. Rev. Lett. 113 052302Google Scholar

    [23]

    Abelev B I, Adam J , Adamova D, et al. 2013 Phys. Rev. Lett. 110 012301Google Scholar

    [24]

    Voloshin S A 2004 Phys. Rev. C 70 057901Google Scholar

    [25]

    Pratt S, Schlichting S, Gavin S 2011 Phys. Rev. C 84 024909Google Scholar

    [26]

    Bzdak A, Koch V, Liao J F 2013 Lect. Notes Phys. 871 503

    [27]

    Schlichting S, Pratt S 2011 Phys. Rev. C 83 014913Google Scholar

    [28]

    Lin Z W, Ko C M, Li B A, Zhang B, Pal S 2005 Phys. Rev. C 72 064901Google Scholar

    [29]

    Lin Z W 2014 Phys. Rev. C 90 014904Google Scholar

    [30]

    Lin Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [31]

    Zhang H X, Xiao Y X, Kang J W, Zhang B W 2022 Nucl. Sci. Tech. 33 150Google Scholar

    [32]

    Khachatryan V, et al. 2017 Phys. Rev. Lett. 118 122301Google Scholar

    [33]

    Adam J, et al. 2019 Phys. Lett. B 798 134975Google Scholar

    [34]

    Zhao J, Feng Y C, Li H L, Wang F Q 2020 Phys. Rev. C 101 034912Google Scholar

    [35]

    Adamczyk L, et al. 2014 Phys. Rev. C 89 044908Google Scholar

    [36]

    Tu B In Poster Given at 25th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2015) Kobe, Japan, September 27-October 3, 2015

    [37]

    Acharya S, et al. 2018 Phys. Lett. B 777 151Google Scholar

    [38]

    Sirunyan A M, et al. 2018 Phys. Rev. C 97 044912Google Scholar

    [39]

    Wang F Q, Zhao J 2017 Phys. Rev. C 95 051901 (RGoogle Scholar

    [40]

    Zhao J, Li H L, Wang F Q 2019 Eur. Phys. J. C 79 168Google Scholar

    [41]

    Abdallah M S, et al. 2022 Phys. Rev. C 106 034908Google Scholar

    [42]

    Xu H J, Zhao J, Wang X B, Li H L, Lin Z W, Shen C W, Wang F Q 2018 Chin. Phys. C 42 084103Google Scholar

    [43]

    Abdallah M S, et al. 2022 Phys. Rev. Lett. 128 092301Google Scholar

    [44]

    Abdallah M, et al. 2022 Phys. Rev. C 105 014901Google Scholar

    [45]

    Voloshin S A 2010 Phys. Rev. Lett. 105 172301Google Scholar

    [46]

    Deng W T, Huang X G, Ma G L, Wang G 2016 Phys. Rev. C 94 041901Google Scholar

    [47]

    Koch V, Schlichting S, Skokov V, Sorensen P, Thomas J, Voloshin S, Wang G, Yee H U 2017 Chin. Phys. C 41 072001Google Scholar

    [48]

    Adam J, et al. 2021 Nucl. Sci. Tech. 32 48Google Scholar

    [49]

    Choudhury S, et al. 2022 Chin. Phys. C 46 014101Google Scholar

    [50]

    Xu H J, Wang X B, Li H L, Zhao J, Lin Z W, Shen C W, Wang F Q 2018 Phys. Rev. Lett. 121 022301Google Scholar

    [51]

    Li H L, Xu H J, Zhou Y, Wang X B, Zhao J, Chen L W, Wang F Q 2020 Phys. Rev. Lett. 125 222301Google Scholar

    [52]

    Feng Y C 2023 EPJ Web Conf. 276 06013

    [53]

    Kharzeev D E, Liao J F, Shi S Z 2022 Phys. Rev. C 106 L051903Google Scholar

    [54]

    Feng Y C, Lin Y F, Zhao J, Wang F Q 2021 Phys. Lett. B 820 136549Google Scholar

    [55]

    Tang A H 2020 Chin. Phys. C 44 054101Google Scholar

    [56]

    Shi S Z, Jiang Y, Lilleskov E, Liao J F 2018 Annals Phys. 394 50Google Scholar

    [57]

    Jiang Y, Shi S Z, Yin Y, Liao J F 2018 Chin. Phys. C 42 011001Google Scholar

    [58]

    Shi S Z, Zhang H, Hou D F, Liao J F 2020 Phys. Rev. Lett. 125 242301Google Scholar

    [59]

    Ajitanand N N, Lacey R A, Taranenko A, Alexander J M 2011 Phys. Rev. C 83 011901Google Scholar

    [60]

    Magdy N, Shi S Z, Liao J F, Ajitanand N N, Lacey R A 2018 Phys. Rev. C 97 061901Google Scholar

    [61]

    Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar

    [62]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [63]

    赵新丽, 马国亮, 马余刚 2023 72 112502Google Scholar

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. 72 112502Google Scholar

    [64]

    Kharzeev D E, Son D T 2011 Phys. Rev. Lett. 106 062301Google Scholar

    [65]

    Jiang Y, Lin Z W, Liao J F 2016 Phys. Rev. C 94 044910Google Scholar

    [66]

    Baznat M, Gudima M, Sorin A, Teryaev O 2016 Phys. Rev. C 93 031902Google Scholar

    [67]

    Zhao F 2014 Nucl. Phys. A 931 746Google Scholar

    [68]

    Zhao J 2017 EPJ Web Conf. 141 01010Google Scholar

    [69]

    Wen L W 2017 Nucl. Phys. A 967 756Google Scholar

    [70]

    Son D T, Zhitnitsky A R 2004 Phys. Rev. D 70 074018Google Scholar

    [71]

    Metlitski M A, Zhitnitsky A R 2005 Phys. Rev. D 72 045011Google Scholar

    [72]

    Burnier Y, Kharzeev D E, Liao J F, Yee H U 2011 Phys. Rev. Lett. 107 052303Google Scholar

    [73]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2015 Phys. Rev. Lett. 114 252302Google Scholar

    [74]

    Adam J, et al. 2016 Phys. Rev. C 93 044903Google Scholar

    [75]

    Bzdak A, Boek P 2013 Phys. Lett. B 726 239

    [76]

    STAR Collaboration Search for the Chiral Magnetic Wave Using Anisotropic Flow of Identified Particles at RHIC arXiv: 2210.14027

    [77]

    Sirunyan A M, et al. 2019 Phys. Rev. C 100 064908Google Scholar

    [78]

    Xu H J, Zhao J, Feng Y C, Wang F Q 2021 Nucl. Phys. A 1005 121770Google Scholar

    [79]

    Ma G L 2014 Phys. Lett. B 735 383Google Scholar

    [80]

    Voloshin S A, Belmont R 2014 Nucl. Phys. A 931 992Google Scholar

    [81]

    Xu H J, Zhao J, Feng Y C, Wang F Q 2020 Phys. Rev. C 101 014913Google Scholar

    [82]

    Wu W Y, Wang C Z, Shou Q Y, Ma Y G, Zheng L 2021 Phys. Rev. C 103 034906Google Scholar

    [83]

    Wang C Z, Wu W Y, Shou Q Y, Ma G L, Ma Y G, Zhang S 2021 Phys. Lett. B 820 136580Google Scholar

    [84]

    Wu W Y 2023 EPJ Web Conf. 276 01001

    [85]

    Hatta Y, Monnai A, Xiao B W 2016 Nucl. Phys. A 947 155Google Scholar

  • [1] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [2] Preface to the special topic: Spin and chiral effects in high energy heavy ion collisions. Acta Physica Sinica, 2023, 72(7): 070101. doi: 10.7498/aps.72.070101
    [3] Zhao Xin-Li, Ma Guo-Liang, Ma Yu-Gang. Electromagnetic field effects and anomalous chiral phenomena in heavy-ion collisions at intermediate and high energy. Acta Physica Sinica, 2023, 72(11): 112502. doi: 10.7498/aps.72.20230245
    [4] Bai Jing, Ge Cheng-Xian, He Lang, Liu Xuan, Wu Zhen-Sen. Analysis of trapping force exerted on multi-layered chiral sphere induced by laser sheet. Acta Physica Sinica, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [5] Zhou Shu-Ying, Shen Wan-Ping, Mao Hong. Analytical solution of surface tension of quark-hadron phase transition. Acta Physica Sinica, 2022, 71(21): 211101. doi: 10.7498/aps.71.20220659
    [6] Wang Jing. Chiral Majorana fermion. Acta Physica Sinica, 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [7] Teng Li-Hua, Mu Li-Jun. Effect of doping symmetry on electron spin relaxation dynamics in (110) GaAs/AlGaAs quantum wells. Acta Physica Sinica, 2017, 66(4): 046802. doi: 10.7498/aps.66.046802
    [8] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [9] Xiao Wen-De, Liu Li-Wei, Yang Kai, Zhang Li-Zhi, Song Bo-Qun, Du Shi-Xuan, Gao Hong-Jun. Tuning the spin, chirality, and adsorption site of metal-phthalocyanine on Au(111) surface with hydrogen atoms. Acta Physica Sinica, 2015, 64(7): 076802. doi: 10.7498/aps.64.076802
    [10] Zhang Yi. Symmetry of Birkhoffians and conserved quantity for a relativistic mechanical system. Acta Physica Sinica, 2012, 61(21): 214501. doi: 10.7498/aps.61.214501
    [11] Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201. doi: 10.7498/aps.60.040201
    [12] Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201. doi: 10.7498/aps.60.030201
    [13] Xu Jin, Wang Wen-Xiang, Yue Ling-Na, Gong Yu-Bin, Wei Yan-Yu. Propagation characteristics of an elliptical chirowaveguide. Acta Physica Sinica, 2009, 58(9): 6291-6295. doi: 10.7498/aps.58.6291
    [14] Mei Feng-Xiang, Wu Hui-Bin. Lagrange symmetry for a dynamical system of relative motion. Acta Physica Sinica, 2009, 58(9): 5919-5922. doi: 10.7498/aps.58.5919
    [15] Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica, 2005, 54(4): 1464-1467. doi: 10.7498/aps.54.1464
    [16] Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong. Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica, 2003, 52(12): 2945-2948. doi: 10.7498/aps.52.2945
    [17] Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica, 2003, 52(7): 1561-1564. doi: 10.7498/aps.52.1561
    [18] Ruan Jian-Hong, Xue Xun, Zhu Wei. . Acta Physica Sinica, 2002, 51(6): 1214-1220. doi: 10.7498/aps.51.1214
    [19] LUO SHAO-KAI, FU JING-LI, CHEN XIANG-WEI. BASIC THEORY OF RELATIVISTIC BIRKHOFFIAN DYNAMICS OF ROTATIONAL SYSTEM. Acta Physica Sinica, 2001, 50(3): 383-389. doi: 10.7498/aps.50.383
    [20] JIA CHUN-SHENG, JIANG XIAO-WEI, WANG XIAO-GUO, YANG QIU-BO. CALCULATION OF THE ENERGY EIGENVALUE OF A-QUANTUM SYSTEM IN THE FRAMEWORK OF-SUPERSYMMETRY AND SHAPE INVARIANCE. Acta Physica Sinica, 1997, 46(1): 12-19. doi: 10.7498/aps.46.12
Metrics
  • Abstract views:  4398
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2023
  • Accepted Date:  03 April 2023
  • Available Online:  18 May 2023
  • Published Online:  05 June 2023

/

返回文章
返回
Baidu
map