Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The direct flow of charged particles and the global polarization of hyperons in 200 AGeV Au+Au collisions at RHIC

Jiang Ze-Fang Wu Xiang-Yu Yu Hua-Qing Cao Shan-Shan Zhang Ben-Wei

Citation:

The direct flow of charged particles and the global polarization of hyperons in 200 AGeV Au+Au collisions at RHIC

Jiang Ze-Fang, Wu Xiang-Yu, Yu Hua-Qing, Cao Shan-Shan, Zhang Ben-Wei
PDF
HTML
Get Citation
  • In non-central relativistic heavy-ion collisions, the non-colliding nucleons drag the colliding nucleons along the longitudinal direction asymmetrically, producing a longitudinally tilted quark-gluon plasma (QGP) fireball. Meanwhile, these colliding nuclei deposit a huge initial orbital angular momentum into the system, leading to the polarization of partons inside the QGP along the direction of the total angular momentum. Based on the optical Glauber model, we develop a 3-dimensional initial condition of the tilted QGP. By combining it with the (3+1)-dimensional viscous hydrodynamic model CLVisc, we investigate the directed flow of charged hadrons and the global polarization of $ \Lambda/\bar{\Lambda} $ hyperons in heavy-ion collisions. Our calculation indicates that the combination of a tilted initial condition of the QGP and the hydrodynamic model can provide a satisfactory description of the directed flow and global polarization observed at RHIC-STAR. This offers a theoretical baseline for using these observables to further constrain the initial geometry and kinematic properties of the nuclear matter created in heavy-ion collisions.
      Corresponding author: Cao Shan-Shan, shanshan.cao@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11935007, 12175122, 2021-867), the Major Project of Basic and Applied Basic Research of Guangdong Province, China (Grant No. 2020B0301030008), the Natural Science Foundation of Hubei Province, China (Grant No. 2021CFB272), the Young Talents Project of the Education Department of Hubei Province, China (Grant No. Q20212703), and the Open Foundation of Key Laboratory of Quark and Lepton Physics of the Education Ministry of China (Grant No. QLPL202104)
    [1]

    Bass S A, Gyulassy M, Stoecker H, Greiner W 1999 J. Phys. G 25 R1Google Scholar

    [2]

    Rischke D H, Pürsün Y, Maruhn J A, Stoecker H, Greiner W 1995 Acta Phys. Hung. A 1 309Google Scholar

    [3]

    Bozek P 2022 Phys. Rev. C 106 L061901Google Scholar

    [4]

    Bozek P 2012 Phys. Rev. C 85 034901Google Scholar

    [5]

    Jiang Z F, Cao S S, Wu X Y, Yang C B, Zhang B W 2022 Phys. Rev. C 105 034901Google Scholar

    [6]

    Jiang Z F, Yang C B, Peng Q 2021 Phys. Rev. C 104 064903Google Scholar

    [7]

    Shen C, Alzhrani S 2020 Phys. Rev. C 102 014909Google Scholar

    [8]

    Ryu S, Jupic V, Shen C 2021 Phys. Rev. C 104 054908Google Scholar

    [9]

    Wang H, Chen J H 2022 Nucl. Sci. Tech. 33 15Google Scholar

    [10]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 72 072501

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501 (in Chinese)

    [11]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar

    [12]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [13]

    孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华 2023 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta Phys. Sin. 72 072401 (in Chinese)

    [14]

    浦实, 黄旭光 2023 72 071202

    Pu S, Huang X G 2023 Acta Phys. Sin. 72 071202 (in Chinese)

    [15]

    尹伊 2023 Accepted

    Yin Y 2023 Acta Phys. Sin. this volume Accepted (in Chinese)

    [16]

    Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar

    [17]

    Li X W, Jiang Z F, Cao S S, Deng J 2023 Eur. Phys. J. C 83 96Google Scholar

    [18]

    Alzhrani S, Ryu S, Shen C 2022 Phys. Rev. C 106 014905Google Scholar

    [19]

    Li H, Xia X L, Huang X G, Huang H Z 2022 Phys. Lett. B 827 136971Google Scholar

    [20]

    Wu X Y, Qin G Y, Pang L G, Wang X N 2022 Phys. Rev. C 105 034909Google Scholar

    [21]

    Yi C, Pu S, Yang D L 2021 Phys. Rev. C 104 064901Google Scholar

    [22]

    Yi C, Pu S, Gao J H, Yang D L 2022 Phys. Rev. C 105 044911Google Scholar

    [23]

    Zhang H X, Xiao Y X, Kang J W, Zhang B W 2022 Nucl. Sci. Tech. 33 150Google Scholar

    [24]

    STAR Collaboration, Adamczyk L, et al. 2017 Nature 548 62Google Scholar

    [25]

    STAR Collaboration, Adam J, et al. 2018 Phys. Rev. C 98 014910Google Scholar

    [26]

    STAR Collaboration, Adam J, et al. 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [27]

    STAR Collaboration, Abdallah M S, et al. 2023 Nature 614 244Google Scholar

    [28]

    Wang X N 2023 Nucl. Sci. Tech. 34 16Google Scholar

    [29]

    高建华, 盛欣力, 王群, 庄鹏飞 2023 72 072501

    Gao J H, Sheng X L, Wang Q, Zhuang P F 2023 Acta Phys. Sin. 72 072501

    [30]

    盛欣力, 梁作堂, 王群 2023 72 072502

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502

    [31]

    Pang L G, Petersen H, Wang X N 2018 Phys. Rev. C 97 064918Google Scholar

    [32]

    Loizides C, Kamin J, d'Enterria D 2018 Phys. Rev. C 97 054910Google Scholar

    [33]

    Shen C, Schenke B 2018 Phys. Rev. C 97 024907Google Scholar

    [34]

    Bialas A, Jezabek M 2004 Phys. Lett. B 590 233Google Scholar

    [35]

    Akamatsu Y, Asakawa M, Hirano T, Kitazawa M, Morita K, Murase K, Nara Y, Nonaka C, Ohnishi A 2018 Phys. Rev. C 98 024909Google Scholar

    [36]

    Denicol G S, Gale C, Jeon S, Monnai A, Schenke B, Shen C 2018 Phys. Rev. C 98 034916Google Scholar

    [37]

    Monnai A, Schenke B, Shen C 2019 Phys. Rev. C 100 024907Google Scholar

    [38]

    Monnai A, Schenke B, Shen C 2021 Int. J. Mod. Phys. A 36 2130007Google Scholar

    [39]

    McNelis M, Heinz U 2021 Phys. Rev. C 103 064903Google Scholar

    [40]

    PHOBOS Collaboration, Alver B, et al. 2011 Phys. Rev. C 83 024913Google Scholar

    [41]

    赵新丽, 马国亮, 马余刚 2023 Accepted

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. Accepted (in Chinese)

    [42]

    Lan S W, Shi S S 2022 Nucl. Sci. Tech. 33 21

    [43]

    STAR Collaboration, Abelev B I, et al. 2008 Phys. Rev. Lett. 101 252301Google Scholar

    [44]

    STAR Collaboration, Adamczyk L, et al. 2012 Phys. Rev. Lett. 108 202301Google Scholar

    [45]

    Becattini F, Chandra V, Zanna L D, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [46]

    Fang R H, Pang L G, Wang Q, Wang X N 2016 Phys. Rev. C 94 024904Google Scholar

    [47]

    Hidaka Y, Pu S, Yang D L 2018 Phys. Rev. D 97 016004Google Scholar

    [48]

    Becattini F, Buzzegoli M, Palermo A 2021 Phys. Lett. B 820 136519Google Scholar

    [49]

    Becattini F, Buzzegoli M, Inghirami G, Karpenko I, Palermo A 2021 Phys. Rev. Lett. 127 272302Google Scholar

    [50]

    Liu S Y F, Yin Y 2021 Phys. Rev. D 104 054043Google Scholar

    [51]

    Liu S Y F, Yin Y 2021 JHEP 07 188

    [52]

    Fu B C, Liu S Y F, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [53]

    Fu B C, Pang L G, Song H C, Yin Y 2022 arXiv: 2201.12970.

  • 图 1  相对论重离子碰撞中核-核非对心对撞示意图, 碰撞后介质沿纵向($ \pm\hat{{\boldsymbol{z}}} $)方向不对称. QGP火球在碰撞平面(xz平面)上存在逆时针旋转的纵向倾斜

    Figure 1.  Schematic figure for non-central heavy-ion collisions. Counter-clockwise tilt of the QGP fireball is created in the reaction (xz) plane

    图 2  非对心Au+Au碰撞产生的QGP的初始能量密度(上)与重子数密度(下)在反应平面内的分布. 此处展现了中心度为 20%—60% (b = 9.0 fm)下200 AGeV Au+Au 碰撞的情形. 箭头表示QGP 火球相对于纵方向的逆时针倾斜

    Figure 2.  The initial energy density (up) and baryon density (down) on the $ \eta_{{\rm{s}}} $-$ x $ plane in 20%–60% (b = 9.0 fm) 200 AGeV Au+Au collisions

    图 3  末态带电强子在200 AGeV Au+Au碰撞不同中心度的赝快度分布$ {\rm{d}}N_{{\rm{ch}}}/{\rm{d}}\eta $. 实线为理论计算结果, 实心圆点为 RHIC-PHOBOS 的测量结果[40]

    Figure 3.  Pseudorapidity distribution $ {\rm{d}}N_{{\rm{ch}}}/{\rm{d}}\eta $ of charged light hadrons in Au+Au collisions at $ \sqrt{s_{\rm{NN}}} = 200 $ GeV, compared between the CLVisc hydrodynamic calculation and the PHOBOS data[40]

    图 4  200 AGeV Au+Au 碰撞不同中心度的直接流$ v_{1} $. 左图为带电粒子直接流对赝快度的依赖, 右图为质子及反质子直接流对快度的依赖. 实验结果取自STAR实验组[43,44]

    Figure 4.  Directed flow $ v_{1} $ of charged hadrons (left) and protons and anti-protons (right) in Au+Au collisions at $ \sqrt{s_{\rm{NN}}} = 200 $ GeV, compared between the CLVisc hydrodynamic calculation and the STAR data[43,44]

    图 5  200 AGeV Au+Au碰撞在不同中心度的超子整体自旋极化$ P^y $. 左图为Λ超子的四种自旋极化(thermal, shear, accT, chemical)随碰撞中心度的依赖. 右图为Λ和$ \overline{\Lambda} $超子的四种自旋极化之和(total = thermal + shear + accT + chemical)随中心度的依赖. 实验数取自RHIC-STAR[25]. 需要注意的是, 根据最新的超子衰变参数$ \alpha_{\Lambda} $, STAR合作组采集到的数据点被缩放了 0.877倍

    Figure 5.  Global polarization $ P^y $ of Λ and $ \bar{\Lambda} $ as a function of centrality in Au+Au collisions at $ \sqrt{s_{\rm{NN}}}=200 $ GeV, compared between the CLVisc hydrodynamic calculation and the STAR data [25]

    图 6  在200 AGe Au+Au碰撞中心度20%—60% 超子整体自旋极化$ P^y $对横动量$ p_{\rm{T}} $的依赖关系. 左图为 Λ超子的四种自旋极化随横动量$ p_{\rm{T}} $的依赖. 右图为Λ和$ \overline{\Lambda} $超子四种贡献之和的整体自旋极化随横动量$ p_T $的依赖. 实验数据取自RHIC-STAR[25]

    Figure 6.  Global polarization $ P^y $ of Λ and $ \bar{\Lambda} $ as a function of transverse momentum $ p_{\rm{T}} $ in 20%–60% Au+Au collisions at $ \sqrt{s_{\rm{NN}}}=200 $ GeV, compared between the CLVisc hydrodynamic calculation and the STAR data[25]

    图 7  200 AGeV Au+Au碰撞在中心度为20%–60%的超子整体自旋极化率$ P^y $随赝快度$ \eta $的分布. 左图为Λ超子的四种自旋极化随赝快度$ \eta $ 的分布. 右图为Λ超子和$ \overline{\Lambda} $超子四种贡献之和的整体自旋极化率随赝快度的分布. 实验数据来自RHIC-STAR[25]

    Figure 7.  Global polarization $ P^y $ of Λ and $ \bar{\Lambda} $ as a function of pseudo-rapidity in Au+Au collisions at $ \sqrt{s_{\rm{NN}}}=200 $ GeV, compared between the CLVisc hydrodynamic calculation and the STAR data[25]

    Baidu
  • [1]

    Bass S A, Gyulassy M, Stoecker H, Greiner W 1999 J. Phys. G 25 R1Google Scholar

    [2]

    Rischke D H, Pürsün Y, Maruhn J A, Stoecker H, Greiner W 1995 Acta Phys. Hung. A 1 309Google Scholar

    [3]

    Bozek P 2022 Phys. Rev. C 106 L061901Google Scholar

    [4]

    Bozek P 2012 Phys. Rev. C 85 034901Google Scholar

    [5]

    Jiang Z F, Cao S S, Wu X Y, Yang C B, Zhang B W 2022 Phys. Rev. C 105 034901Google Scholar

    [6]

    Jiang Z F, Yang C B, Peng Q 2021 Phys. Rev. C 104 064903Google Scholar

    [7]

    Shen C, Alzhrani S 2020 Phys. Rev. C 102 014909Google Scholar

    [8]

    Ryu S, Jupic V, Shen C 2021 Phys. Rev. C 104 054908Google Scholar

    [9]

    Wang H, Chen J H 2022 Nucl. Sci. Tech. 33 15Google Scholar

    [10]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 72 072501

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501 (in Chinese)

    [11]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar

    [12]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [13]

    孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华 2023 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta Phys. Sin. 72 072401 (in Chinese)

    [14]

    浦实, 黄旭光 2023 72 071202

    Pu S, Huang X G 2023 Acta Phys. Sin. 72 071202 (in Chinese)

    [15]

    尹伊 2023 Accepted

    Yin Y 2023 Acta Phys. Sin. this volume Accepted (in Chinese)

    [16]

    Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar

    [17]

    Li X W, Jiang Z F, Cao S S, Deng J 2023 Eur. Phys. J. C 83 96Google Scholar

    [18]

    Alzhrani S, Ryu S, Shen C 2022 Phys. Rev. C 106 014905Google Scholar

    [19]

    Li H, Xia X L, Huang X G, Huang H Z 2022 Phys. Lett. B 827 136971Google Scholar

    [20]

    Wu X Y, Qin G Y, Pang L G, Wang X N 2022 Phys. Rev. C 105 034909Google Scholar

    [21]

    Yi C, Pu S, Yang D L 2021 Phys. Rev. C 104 064901Google Scholar

    [22]

    Yi C, Pu S, Gao J H, Yang D L 2022 Phys. Rev. C 105 044911Google Scholar

    [23]

    Zhang H X, Xiao Y X, Kang J W, Zhang B W 2022 Nucl. Sci. Tech. 33 150Google Scholar

    [24]

    STAR Collaboration, Adamczyk L, et al. 2017 Nature 548 62Google Scholar

    [25]

    STAR Collaboration, Adam J, et al. 2018 Phys. Rev. C 98 014910Google Scholar

    [26]

    STAR Collaboration, Adam J, et al. 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [27]

    STAR Collaboration, Abdallah M S, et al. 2023 Nature 614 244Google Scholar

    [28]

    Wang X N 2023 Nucl. Sci. Tech. 34 16Google Scholar

    [29]

    高建华, 盛欣力, 王群, 庄鹏飞 2023 72 072501

    Gao J H, Sheng X L, Wang Q, Zhuang P F 2023 Acta Phys. Sin. 72 072501

    [30]

    盛欣力, 梁作堂, 王群 2023 72 072502

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502

    [31]

    Pang L G, Petersen H, Wang X N 2018 Phys. Rev. C 97 064918Google Scholar

    [32]

    Loizides C, Kamin J, d'Enterria D 2018 Phys. Rev. C 97 054910Google Scholar

    [33]

    Shen C, Schenke B 2018 Phys. Rev. C 97 024907Google Scholar

    [34]

    Bialas A, Jezabek M 2004 Phys. Lett. B 590 233Google Scholar

    [35]

    Akamatsu Y, Asakawa M, Hirano T, Kitazawa M, Morita K, Murase K, Nara Y, Nonaka C, Ohnishi A 2018 Phys. Rev. C 98 024909Google Scholar

    [36]

    Denicol G S, Gale C, Jeon S, Monnai A, Schenke B, Shen C 2018 Phys. Rev. C 98 034916Google Scholar

    [37]

    Monnai A, Schenke B, Shen C 2019 Phys. Rev. C 100 024907Google Scholar

    [38]

    Monnai A, Schenke B, Shen C 2021 Int. J. Mod. Phys. A 36 2130007Google Scholar

    [39]

    McNelis M, Heinz U 2021 Phys. Rev. C 103 064903Google Scholar

    [40]

    PHOBOS Collaboration, Alver B, et al. 2011 Phys. Rev. C 83 024913Google Scholar

    [41]

    赵新丽, 马国亮, 马余刚 2023 Accepted

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. Accepted (in Chinese)

    [42]

    Lan S W, Shi S S 2022 Nucl. Sci. Tech. 33 21

    [43]

    STAR Collaboration, Abelev B I, et al. 2008 Phys. Rev. Lett. 101 252301Google Scholar

    [44]

    STAR Collaboration, Adamczyk L, et al. 2012 Phys. Rev. Lett. 108 202301Google Scholar

    [45]

    Becattini F, Chandra V, Zanna L D, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [46]

    Fang R H, Pang L G, Wang Q, Wang X N 2016 Phys. Rev. C 94 024904Google Scholar

    [47]

    Hidaka Y, Pu S, Yang D L 2018 Phys. Rev. D 97 016004Google Scholar

    [48]

    Becattini F, Buzzegoli M, Palermo A 2021 Phys. Lett. B 820 136519Google Scholar

    [49]

    Becattini F, Buzzegoli M, Inghirami G, Karpenko I, Palermo A 2021 Phys. Rev. Lett. 127 272302Google Scholar

    [50]

    Liu S Y F, Yin Y 2021 Phys. Rev. D 104 054043Google Scholar

    [51]

    Liu S Y F, Yin Y 2021 JHEP 07 188

    [52]

    Fu B C, Liu S Y F, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [53]

    Fu B C, Pang L G, Song H C, Yin Y 2022 arXiv: 2201.12970.

  • [1] Sun Xu, Zhou Chen-Sheng, Chen Jin-Hui, Chen Zhen-Yu, Ma Yu-Gang, Tang Ai-Hong, Xu Qing-Hua. Measurements of global polarization of QCD matter in heavy-ion collisions. Acta Physica Sinica, 2023, 72(7): 072401. doi: 10.7498/aps.72.20222452
    [2] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [3] Ruan Li-Juan, Xu Zhang-Bu, Yang Chi. Global polarization of hyperons and spin alignment of vector mesons in quark matters. Acta Physica Sinica, 2023, 72(11): 112401. doi: 10.7498/aps.72.20230496
    [4] Shou Qi-Ye, Zhao Jie, Xu Hao-Jie, Li Wei, Wang Gang, Tang Ai-Hong, Wang Fu-Qiang. Progress on the experimental search for the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave. Acta Physica Sinica, 2023, 72(11): 112504. doi: 10.7498/aps.72.20230109
    [5] Pu Shi, Huang Xu-Guang. Relativistic spin hydrodynamics. Acta Physica Sinica, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [6] Gao Jian-Hua, Huang Xu-Guang, Liang Zuo-Tang, Wang Qun, Wang Xin-Nian. Spin-orbital coupling in strong interaction and global spin polarization. Acta Physica Sinica, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [7] Liu He, Chu Peng-Cheng. Elliptic flow splitting of charged pions in relativistic heavy-ion collisions. Acta Physica Sinica, 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [8] Zhang Shan-Liang, Xing Hong-Xi, Wang En-Ke. Jet quenching effect in relativistic heavy-ion collisions. Acta Physica Sinica, 2023, 72(20): 200304. doi: 10.7498/aps.72.20230993
    [9] Yang Shuai, Tang Ze-Bo, Yang Chi, Zha Wang-Mei. Impact parameter dependence of photon-photon interactions in relativistic heavy-ion collisions. Acta Physica Sinica, 2023, 72(20): 201201. doi: 10.7498/aps.72.20230948
    [10] Zhang Xiao-Hui, Dong Ke-Gong, Hua Jian-Fei, Zhu Bin, Tan Fang, Wu Yu-Chi, Lu Wei, Gu Yu-Qiu. Transverse distribution of electron beam produced by relativistic picosecond laser in underdense plasma. Acta Physica Sinica, 2019, 68(19): 195203. doi: 10.7498/aps.68.20191106
    [11] Guan Na-Na. Effect of inelastic scattering process of gluons on dilepton productions of quark-gluon plasma. Acta Physica Sinica, 2016, 65(14): 142501. doi: 10.7498/aps.65.142501
    [12] Chen Xiao-Fan. Coherence parameters of partially chaotic sources in relativistic heavy-ion collisions. Acta Physica Sinica, 2012, 61(9): 092501. doi: 10.7498/aps.61.092501
    [13] Luo Mu-Hua, Zhang Qiu-Ju, Yan Chun-Yan. Optimization of attosecond pulses from the interaction of ultrarelativistic laser with overdense plasma. Acta Physica Sinica, 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [14] Liu Jiong, Yuan Ye-Fei, Deng Xiao-Long. Characteristics of the synchrotron radiation from relativistic electrons in plasma. Acta Physica Sinica, 2007, 56(2): 1214-1223. doi: 10.7498/aps.56.1214
    [15] Xu Hui, Sheng Zheng-Ming, Zhang Jie. Relativistic effects on resonance absorption in laser-plasma interaction. Acta Physica Sinica, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [16] Duan Wen-Shan, Hong Xue-Ren. Ion acoustic solitary waves in a weakly relativistic plasma under transverse p erturbations. Acta Physica Sinica, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [17] HE ZE-JUN, JIANG WEI-YUAN, ZHU ZHI-YUAN, LIU BO. A SIGNATURE FOR THE FORMATION OF THE QUARK-GLUON PLASMA IN RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS. Acta Physica Sinica, 2000, 49(5): 911-914. doi: 10.7498/aps.49.911
    [18] QU YI-ZHI, GONG XIAO-MIN, LI JIA-MING. RELATIVISTIC EFFECT IN INELASTIC COLLISION OF ELECTRON WITH ATOM OR ION. Acta Physica Sinica, 1995, 44(11): 1719-1726. doi: 10.7498/aps.44.1719
    [19] GUO SHI-CHONG, CAI SHI-DONG. DISPERSION RELATION OF GENERAL MAGNETICALLY CONFINED WEAK RELATIVISTIC PLASMAS. Acta Physica Sinica, 1987, 36(7): 870-880. doi: 10.7498/aps.36.870
    [20] HE ZUO-XIU, LIN DA-HANG, ZHAO PEI-ZHEN. QUARKONIUM POTENTIAL MODEL WITH A NON-ZERO GLUON EFFECTIVE MASS. Acta Physica Sinica, 1982, 31(4): 525-531. doi: 10.7498/aps.31.525
Metrics
  • Abstract views:  5403
  • PDF Downloads:  195
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2022
  • Accepted Date:  17 January 2023
  • Available Online:  17 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回
Baidu
map