-
Using one-dimensional particle-in-cell simulations, the generation of attosecond pulses is studied due to the interaction of a short ultrarelativistic laser pulse with overdense plasma. According to the ultrarelativistic similarity theory, we analyze the motion of the electrons and the generation of high-order harmonics. We find that when the plasma density is constant and the dimensionless similarity parameter S decreases, the conversion efficiency of attosecond pulses first increases and then decreases. So we can choose a laser pulse with an appropriate intensity to obtain an attosecond pulse with a high conversion efficiency. Furthermore, when S is fixed, with the increase of the plasma density, the conversion efficiency of attosecond pulses shows an upward tendency. This implies that we can obtain a higher attosecond pulse when a laser with an appropriate intensity is incident on a denser plasma.
-
Keywords:
- attosecond pulse /
- ultrarelativistic laser /
- overdense plasma /
- particle-in-cell simulations
[1] Zeng Z N, Li R X, Xie X H, Xu Z Z 2004 Acta Phys. Sin. 53 2316 (in Chinese)[曾志男、李儒新、谢新华、徐至展2004 53 2316]
[2] Cao W, Lan P F, Lu P X 2007 Acta Phys. Sin. 56 1608 (in Chinese)[曹 伟、兰鹏飞、陆培祥2007 56 1608 ]
[3] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquib A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614
[4] Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese)[李 昆、张 杰、余 玮 2003 52 1412 ]
[5] Zhang Q J, Sheng Z M, Zhang J 2004 Acta Phys. Sin. 53 2180 (in Chinese) [张秋菊、盛政明、张 杰 2004 53 2180 ]
[6] Garman R L, Rhodes C K, Benjamin R F 1981 Phys. Rev. A 24 2469
[7] Garman R L, Forslund D W, Kindel J M 1981 Phys. Rev. Lett. 46 29
[8] Lichters R, Meyer-ter-Vehn J, Pukhov A 1996 Phys. Plasmas 3 3245
[9] Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745
[10] Plaja L, Roso L, Rzazewski K, Lewenstein M 1998 J. Opt. Soc. Am. B 15 1904
[11] Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 046404
[12] Gordienko S, Pukhov A 2005 Phys. Plasmas 12 043109
[13] Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 065401
[14] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Chen J E 2008 Phys. Rev. Lett. 100 135003
[15] Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002
-
[1] Zeng Z N, Li R X, Xie X H, Xu Z Z 2004 Acta Phys. Sin. 53 2316 (in Chinese)[曾志男、李儒新、谢新华、徐至展2004 53 2316]
[2] Cao W, Lan P F, Lu P X 2007 Acta Phys. Sin. 56 1608 (in Chinese)[曹 伟、兰鹏飞、陆培祥2007 56 1608 ]
[3] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquib A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614
[4] Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese)[李 昆、张 杰、余 玮 2003 52 1412 ]
[5] Zhang Q J, Sheng Z M, Zhang J 2004 Acta Phys. Sin. 53 2180 (in Chinese) [张秋菊、盛政明、张 杰 2004 53 2180 ]
[6] Garman R L, Rhodes C K, Benjamin R F 1981 Phys. Rev. A 24 2469
[7] Garman R L, Forslund D W, Kindel J M 1981 Phys. Rev. Lett. 46 29
[8] Lichters R, Meyer-ter-Vehn J, Pukhov A 1996 Phys. Plasmas 3 3245
[9] Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745
[10] Plaja L, Roso L, Rzazewski K, Lewenstein M 1998 J. Opt. Soc. Am. B 15 1904
[11] Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 046404
[12] Gordienko S, Pukhov A 2005 Phys. Plasmas 12 043109
[13] Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 065401
[14] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Chen J E 2008 Phys. Rev. Lett. 100 135003
[15] Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002
Catalog
Metrics
- Abstract views: 9253
- PDF Downloads: 727
- Cited By: 0