搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论皮秒激光在低密度等离子体中直接加速的电子束的横向分布特征研究

张晓辉 董克攻 华剑飞 朱斌 谭放 吴玉迟 鲁巍 谷渝秋

引用本文:
Citation:

相对论皮秒激光在低密度等离子体中直接加速的电子束的横向分布特征研究

张晓辉, 董克攻, 华剑飞, 朱斌, 谭放, 吴玉迟, 鲁巍, 谷渝秋

Transverse distribution of electron beam produced by relativistic picosecond laser in underdense plasma

Zhang Xiao-Hui, Dong Ke-Gong, Hua Jian-Fei, Zhu Bin, Tan Fang, Wu Yu-Chi, Lu Wei, Gu Yu-Qiu
PDF
HTML
导出引用
  • 相对论皮秒激光与低密度等离子体作用可以通过“激光直接加速”机制获得超有质动力定标率的高能电子, 且电荷量可以达到百nC级, 在伽马射线产生、正电子产生等方面具有重要应用. 然而激光直接加速电子束相比激光尾场加速电子束具有更大的发散角, 同时实验观测的横向束分布也不均匀, 但是其中的物理机制研究较少. 本文通过二维粒子模拟证明, 相对论皮秒激光在低密度等离子体中驱动的激光直接加速中, 高能电子束会在激光偏振方向分叉, 而且电子能量越高这种现象越明显. 文章通过细致的理论分析解释了这种高能电子横向分布产生“分叉”结构的内在原因. 在激光直接加速的过程中, 电子在纵向获得加速的时候, 它在激光偏振方向(横向) betatron振荡的动能也会随之增加, 当电子的能量足够高时, 二者呈线性关系, 因此高能电子的横向速度的振幅近似相等, 这种相等的振幅最终导致了高能电子束在激光偏振方向的分叉.
    Energetic electron beam can be generated through the directlaser acceleration (DLA) mechanism when high power picosecond laser propagates in underdense plasma, and the electron yield can reach several hundred nC, which has a great application in driving secondary radiations, such as bremsstrahlung radiation and betatron radiation. When a linearly polarized laser is used, the beam divergence is always larger in the laser polarization direction. What is more, the forked spectral-spatial distribution is observed in the experiments driven by femtosecond laser where DLA is combined with the laser wakefield acceleration (LWFA). The forked distribution is regarded as an important feature of DLA. However, an analytical explanation for both the bigger divergence and the forked spectral-spatial distribution is still lacking. Two-dimensional (2D) particle-in-cell simulations of picosecond laser propagating in underdense plasma are conducted in this paper to show how the fork is formed in DLA. The fork structure is a reflection of the distribution of electron transverse velocity. We find that when electrons are accelerated longitudinally, the transverse oscillation energy in the laser polarization direction increases correspondingly. If the electron energy is high enough, the transverse oscillation energy will increase linearly with the electron energy. As a result, the most energetic electrons will have an equal amplitude of vy, where vy denotes the velocity in the laser polarization direction. For a single electron, the distribution of its transverse velocity over a long period $\dfrac{{{\rm d}P}}{{{\rm d}{v_y}}}$, will peak at ±vm (vm denotes the amplitude of vy). If all the electrons have the same vm, the distribution of vy at a given time will be the same as $\dfrac{{{\rm d}P}}{{{\rm d}{v_y}}}$. That means they will split transversely, leading to a forked spectral-spatial distribution. By using a simplified model, the analytical expression of vm is derived, showing good agreement with vm in the PIC simulation. However, the oscillation energy in the direction perpendicular to polarization will decrease when electrons are accelerated longitudinally (acceleration damping). As a consequence, the divergence perpendicular to the polarization direction will be smaller. Our research gives a quantitative explanation for the transverse distribution of electrons generated by DLA. With some modification, it can also be used in DLA combined LWFA to better control the dephasing length.
      通信作者: 谷渝秋, yqgu@caep.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0401100)和科学挑战计划(批准号: TZ2018005)资助的课题
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported by the National Key Program for S&T Research and Development, China (Grant No. 2016YFA0401100), and Science Challenge Project, China (Grant No.TZ2018005)
    [1]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [4]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538Google Scholar

    [5]

    Mangles S, Murphy C, Najmudin Z, Thomas A, Collier J, Dangor A, Divall E, Foster P, Gallacher J, Hooker C 2004 Nature 431 535Google Scholar

    [6]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301Google Scholar

    [7]

    Gahn C, Tsakiris G, Pukhov A, Meyer-ter-Vehn J, Pretvyler G, Thirolf P, Habs D, Witte K 1999 Phys. Rev. Lett. 83 4772Google Scholar

    [8]

    Mangles S P D, Walton B R, Tzoufras M, Najmudin Z, Clarke R J, Dangor A E, Evans R G, Fritzler S, Gopal A, Hernandez-Gomez C, Mori W B, Rozmus W, Tatarakis M, Thomas A G R, Tsung F S, Wei M S, Krushelnick K 2005 Phys. Rev. Lett. 94 245001Google Scholar

    [9]

    Willingale L, Thomas A G R, Nilson P M, Chen H, Cobble J, Craxton R S, Maksimchuk A, Norreys P A, Sangster T C, Scott R H H, Stoeckl C, Zulick C, Krushelnick K 2013 New J. Phys. 15 025023Google Scholar

    [10]

    Albert F, Lemos N, Shaw J L, Pollock B B, Goyon C, Schumaker W, Saunders A M, Marsh K A, Pak A, Ralph J E, Martins J L, Amorim L D, Falcone R W, Glenzer S H, Moody J D, Joshi C 2017 Phys. Rev. Lett. 118 134801Google Scholar

    [11]

    Lemos N, Albert F, Shaw J L, Papp D, Polanek R, King P, Milder A, Marsh K A, Pak A, Pollock B 2018 Plasma Phys. Contr. F. 60

    [12]

    Sarri G, Poder K, Cole J M, Schumaker W, Piazza A D, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747Google Scholar

    [13]

    Ledingham K W D, Mckenna P, Singhal R P 2003 Science 300 1107Google Scholar

    [14]

    Qi W, Zhang X, Zhang B, He S, Zhang F, Cui B, Yu M, Dai Z, Peng X, Gu Y 2019 Phys. Plasmas 26 043103Google Scholar

    [15]

    Nilson P M, Mangles S P D, Willingale L, Kaluza M C, Thomas A G R, Tatarakis M, Clarke R J, Lancaster K L, Karsch S, Schreiber J, Najmudin Z, Dangor A E, Krushelnick K 2010 New J. Phys. 12 045014Google Scholar

    [16]

    Tsakiris G D, Gahn C, Tripathi V K 2000 Phys. Plasmas 7 3017Google Scholar

    [17]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847Google Scholar

    [18]

    Shaw J L, Lemos N, Amorim L D, Vafaei-Najafabadi N, Marsh K A, Tsung F S, Mori W B, Joshi C 2017 Phys. Rev. Lett. 118 064801Google Scholar

    [19]

    Gallardo González I, Ekerfelt H, Hansson M, Audet T L, Aurand B, Desforges F G, Dufrénoy S D, Persson A, Davoine X, Wahlström C G, Cros B, Lundh O 2018 New J. Phys. 20 053011Google Scholar

    [20]

    Zhang X, Khudik V N, Shvets G 2015 Phys. Rev. Lett. 114 184801Google Scholar

    [21]

    Shaw J L, Lemos N, Marsh K A, Froula D H, Joshi C 2018 Plasma Phys. Contr. F. 60 044012Google Scholar

    [22]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T 2002 International Conference on Computational Science Amsterdam, The Netherlands, April 21−24, 2002 p342

  • 图 1  PIC模拟中$t = 5965\omega _0^{ - 1}$时刻的(a)激光强度包络, (b)电子的电荷密度分布与(c)通道内的聚焦场${E_{\rm{s}}} = {E_{y{\rm{s}}}} - $$c{B_{z{\rm{s}}}} $, 模拟中, 等离子体密度为2 × 1019 cm–3, 激光脉宽为0.8 ps, a0 = 3

    Fig. 1.  (a) The laser envelope; (b) electron density; (c) channel focusing force ${E_{\rm{s}}} = {E_{y{\rm{s}}}} - c{B_{z{\rm{s}}}}$ at $t = 5965\omega _0^{ - 1}$ into the simulation, in which the plasma density is 2 × 1019 cm–3 and the laser have a duration 0.8 ps with a0 = 3.

    图 2  $t = 5965\omega _0^{ - 1}$时刻电子在相空间的分布 (a)电子在能量-vy相空间的分布, 白色虚线是电子横向速度振幅的理论值, 右侧的黑色实线代表着能量大于60 MeV的电子的vy的分布, 为了更好地展示, 其计数值做了归一化处理; (b)能量在60—70 MeV之间的电子在y-py相空间的分布

    Fig. 2.  Electron phase space at $t = 5965\omega _0^{ - 1}$: (a) Energy -vy phase space, the white dashed lines denote the amplitude of vy from analytical solution,the black solid line denotes the vy distribution of electrons above 60 MeV, the counts are normalized to achieve a better illustration; (b) the y-py phase space of electrons within energy range from 60 MeV to 70 MeV.

    图 3  $t = 4965\omega _0^{ - 1}$$t = 6965\omega _0^{ - 1}$这段时间内100个被追踪的电子的能量γ以及横向能量${\epsilon_y}$的变化, 图中红色实线是根据等式(17)拟合得到的结果

    Fig. 3.  The transverse energy ${\epsilon_y}$ of 100 electrons as a function of γ from $t = 4965\omega _0^{ - 1}$ to $t = 6965\omega _0^{ - 1}$. The red dashed line is the fitted result according to Eq. (17).

    图 4  (a)电子速度振幅${v_{\rm{m}}}$的三种不同展宽; (b)三种展宽下对应的vy的分布

    Fig. 4.  (a) Three distributions of ${v_{\rm{m}}}$; (b) the corresponding distributions of vy.

    Baidu
  • [1]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [4]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538Google Scholar

    [5]

    Mangles S, Murphy C, Najmudin Z, Thomas A, Collier J, Dangor A, Divall E, Foster P, Gallacher J, Hooker C 2004 Nature 431 535Google Scholar

    [6]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301Google Scholar

    [7]

    Gahn C, Tsakiris G, Pukhov A, Meyer-ter-Vehn J, Pretvyler G, Thirolf P, Habs D, Witte K 1999 Phys. Rev. Lett. 83 4772Google Scholar

    [8]

    Mangles S P D, Walton B R, Tzoufras M, Najmudin Z, Clarke R J, Dangor A E, Evans R G, Fritzler S, Gopal A, Hernandez-Gomez C, Mori W B, Rozmus W, Tatarakis M, Thomas A G R, Tsung F S, Wei M S, Krushelnick K 2005 Phys. Rev. Lett. 94 245001Google Scholar

    [9]

    Willingale L, Thomas A G R, Nilson P M, Chen H, Cobble J, Craxton R S, Maksimchuk A, Norreys P A, Sangster T C, Scott R H H, Stoeckl C, Zulick C, Krushelnick K 2013 New J. Phys. 15 025023Google Scholar

    [10]

    Albert F, Lemos N, Shaw J L, Pollock B B, Goyon C, Schumaker W, Saunders A M, Marsh K A, Pak A, Ralph J E, Martins J L, Amorim L D, Falcone R W, Glenzer S H, Moody J D, Joshi C 2017 Phys. Rev. Lett. 118 134801Google Scholar

    [11]

    Lemos N, Albert F, Shaw J L, Papp D, Polanek R, King P, Milder A, Marsh K A, Pak A, Pollock B 2018 Plasma Phys. Contr. F. 60

    [12]

    Sarri G, Poder K, Cole J M, Schumaker W, Piazza A D, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747Google Scholar

    [13]

    Ledingham K W D, Mckenna P, Singhal R P 2003 Science 300 1107Google Scholar

    [14]

    Qi W, Zhang X, Zhang B, He S, Zhang F, Cui B, Yu M, Dai Z, Peng X, Gu Y 2019 Phys. Plasmas 26 043103Google Scholar

    [15]

    Nilson P M, Mangles S P D, Willingale L, Kaluza M C, Thomas A G R, Tatarakis M, Clarke R J, Lancaster K L, Karsch S, Schreiber J, Najmudin Z, Dangor A E, Krushelnick K 2010 New J. Phys. 12 045014Google Scholar

    [16]

    Tsakiris G D, Gahn C, Tripathi V K 2000 Phys. Plasmas 7 3017Google Scholar

    [17]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847Google Scholar

    [18]

    Shaw J L, Lemos N, Amorim L D, Vafaei-Najafabadi N, Marsh K A, Tsung F S, Mori W B, Joshi C 2017 Phys. Rev. Lett. 118 064801Google Scholar

    [19]

    Gallardo González I, Ekerfelt H, Hansson M, Audet T L, Aurand B, Desforges F G, Dufrénoy S D, Persson A, Davoine X, Wahlström C G, Cros B, Lundh O 2018 New J. Phys. 20 053011Google Scholar

    [20]

    Zhang X, Khudik V N, Shvets G 2015 Phys. Rev. Lett. 114 184801Google Scholar

    [21]

    Shaw J L, Lemos N, Marsh K A, Froula D H, Joshi C 2018 Plasma Phys. Contr. F. 60 044012Google Scholar

    [22]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T 2002 International Conference on Computational Science Amsterdam, The Netherlands, April 21−24, 2002 p342

  • [1] 朱翰辰, 周楚亮, 李晓锋, 田野, 李儒新. 超过30 GeV的强激光锁相直接电子加速.  , 2024, 73(19): 195201. doi: 10.7498/aps.73.20240652
    [2] 蒋康男, 冯珂, 柯林佟, 余昌海, 张志钧, 秦志勇, 刘建胜, 王文涛, 李儒新. 高品质激光尾波场电子加速器.  , 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [3] 王通, 王晓方. 激光尾场加速电子的密度梯度注入的解析处理.  , 2016, 65(4): 044102. doi: 10.7498/aps.65.044102
    [4] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束.  , 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [5] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速.  , 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [6] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应.  , 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [7] 张国博, 马燕云, 邹德滨, 卓红斌, 邵福球, 杨晓虎, 葛哲屹, 余同普, 田成林, 欧阳建明, 赵娜. 激光脉冲的横向波形对弓形波电子俘获的影响.  , 2013, 62(12): 125205. doi: 10.7498/aps.62.125205
    [8] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究.  , 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [9] 王广辉, 王晓方, 董克攻. 超短超强激光导引及对电子加速的影响.  , 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [10] 夏志林. 激光作用下纳米限域介质材料中的电子加速过程.  , 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [11] 黄仕华, 吴锋民. 外加静电场的聚焦激光脉冲真空加速电子方案.  , 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [12] 董晓刚, 盛政明, 陈 民, 张 杰. 强激光与固体靶作用产生的表面电子加速和辐射研究.  , 2008, 57(12): 7423-7429. doi: 10.7498/aps.57.7423
    [13] 赵志国, 吕百达. 用拉盖尔-高斯激光对真空中电子直接加速.  , 2006, 55(4): 1798-1802. doi: 10.7498/aps.55.1798
    [14] 田友伟, 余 玮, 陆培祥, 何 峰, 马法君, 徐 涵, 静国梁, 钱列加. 紧聚焦的超短超强激光脉冲在真空中加速斜入射的相对论电子.  , 2005, 54(9): 4208-4212. doi: 10.7498/aps.54.4208
    [15] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速.  , 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [16] 何峰, 余玮, 陆培祥, 袁孝, 刘晶儒. 紧聚焦的飞秒激光脉冲在真空中对电子的加速.  , 2004, 53(1): 165-170. doi: 10.7498/aps.53.165
    [17] 邵磊, 霍裕昆, 王平晓, 孔青, 袁祥群, 冯量. 场极化方向对强激光加速电子效应的影响.  , 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [18] 常文蔚, 张立夫, 邵福球. 激光等离子体波电子加速器.  , 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
    [19] 朱莳通, 沈文达, 邱锡铭, 王之江. 激光加速器中电子能量增益的广义协变推导.  , 1989, 38(4): 559-566. doi: 10.7498/aps.38.559
    [20] 庄杰佳. 逆契仑柯夫聚焦激光电子加速器.  , 1984, 33(9): 1255-1260. doi: 10.7498/aps.33.1255
计量
  • 文章访问数:  7503
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 修回日期:  2019-08-23
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回
Baidu
map