搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

s夸克物质的边界效应和K介子自相似结构对QGP–强子相变的影响

戴婷婷 程鸾 丁慧强 张卫宁 王恩科

引用本文:
Citation:

s夸克物质的边界效应和K介子自相似结构对QGP–强子相变的影响

戴婷婷, 程鸾, 丁慧强, 张卫宁, 王恩科

The Boundary Effect of s Quark Matter and Self-similarity Structure Influence of K Meson on QGP–hadron Phase Transition

Dai Ting-Ting, Cheng Luan, Ding Hui-Qiang, Zhang Wei-Ning, Wang En-Ke
PDF
HTML
导出引用
  • 本文聚焦于小尺度$ \text{s} $夸克物质的边界效应和强子气体中强子的自相似结构对QGP–强子相相变的影响. 本文采用多级反射展开方法研究包含$ \text{s} $夸克的QGP热滴的边界效应. 通过计算发现在边界效应的影响下, 小尺度$ \text{s} $夸克物质相较于热力学极限条件下具有更低的能量密度, 熵密度和压强. 在强子相中, $ \text{K} $介子在集体流, 量子关联和强相互作用的影响下, 与相邻π介子形成两体自相似结构. 通过两体分形模型对$ \text{K} $介子的自相似结构影响计算得出, $ \text{K} $介子的自相似结构存在于碰撞系统中, 导致$ \text{K} $介子的能量密度, 熵密度和压强增大. 本研究预测在低能碰撞HIAF能区, $ \text{K} $介子的自相似结构影响因子 $ q_{1} = 1.042 $. 考虑边界效应和$ \text{K} $, π介子的自相似结构对相变的影响, 计算发现$ \text{s} $夸克物质在边界效应与自相似结构的影响下相变温度均有所升高. 若$ \text{s} $夸克物质的边界弯曲程度较大, 则相变温度的升幅相较于自相似结构的影响更明显.
    We investigate the boundary effect of small-scale $ \text{s} $ quark matter, and the self-similarity structure influence of strange hadrons in the hadron gas on QGP–hadron phase transition. In this study, the multiple reflection expansion method is employed to investigate the boundary effect of QGP droplets containing $ \text{s} $ quarks. The calculation reveals that under the influence of boundary effect, small-scale $ \text{s} $ quark matter exhibits lower energy density, entropy density, and pressure. In hadron phase, there is the two-body self-similarity structure between $ \text{K} $ meson and neighboring π mesons under the influence of collective flow, quantum correlations, and strong interactions. By applying Two-Body Fractal Model to study the self-similarity structure of the $ \text{K} $ meson in meson and quark aspect, it is found that the self-similarity structure of the $ \text{K} $ meson exists in hadron phase, leading to an increase in the energy density, entropy density, and pressure of the $ \text{K} $ meson. With the influence of self-similarity structure, it is found that the derived transverse momentum spectrum of $ \text{K} $ meson has a good agreement with experimental data (Fig. (a)). This study predicts that in the HIAF energy region, the self-similarity structure factor of $ \text{K} $ meson $ q_{1} $ approaches $ 1.042 $. Under the influence of boundary effect and self-similarity structure of $ \text{K} $ and π mesons, it shows that the phase transition temperature of $ \text{s} $ quark matter increases (Fig. (b)). And if the boundary of $ \text{s} $ quark matter curves more, the increase of phase transition temperature becomes more pronounced compared to the influence of self-similarity structure.
  • 图 1  QGP热滴的势场示意图

    Fig. 1.  The potential field of QGP droplet.

    图 2  QGP热滴半径分别为$ r = 1, \, 1.5, \, 6\text{ fm} $的(a1)−(a3)能量密度; (b1)−(b3)熵密度; (c1)−(c3)压强

    Fig. 2.  (a1)−(a3) Energy density; (b1)−(b3) entropy density and (c1)−(c3) pressure of QGP droplets with radius $ r = 1, \, 1.5, \, 6\text{ fm} $ respectively.

    图 3  半径为$ r = 1\text{ fm} $的QGP热滴, 包含$ \text{s} $, $ \text{u} $, $ \text{d} $三种夸克, 和包含 $ \text{u} $, $ \text{d} $两种夸克的热力学量 (a)能量密度; (b)压强; (c)熵密度

    Fig. 3.  Thermodynamic quantities of QGP droplet $ r = 1\text{ fm} $ considering $ \text{s} $, $ \text{u} $, $ \text{d} $ quarks and $ \text{u} $, $ \text{d} $ quarks in it respectively: (a) Energy density; (b) pressure; (c) entropy density.

    图 4  (a) 介子层次和(b) 夸克层次下, 介子与介子-介子之间的自相似结构

    Fig. 4.  Self-similarity structure of a meson and a resonant state in (a) meson aspect and (b) quark aspect.

    图 5  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 39\text{ GeV} $中临界温度附近的两体自相似结构影响因子$ q_{1} $的变化

    Fig. 5.  The relationship between the factor $ q_{1} $ and the temperature T near to the critical temperature in Au+Au collision at $ \sqrt{s_{\text{NN}}} = 39\, \text{GeV} $.

    图 6  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \, 27, $$ 39\text{ GeV} $, 0−5%对心度下, $ \text{K} $介子的自相似结构影响的修正因子$ q_{1} $和化学势的变化关系图

    Fig. 6.  The relationship between the factor $ q_{1} $ for $ \text{K} $ meson and chemical potential μ in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \, 27, \, 39\text{ GeV} $ for 0−5% centrality.

    图 7  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 19.6, \, 39\text{ GeV} $中, 受自相似结构影响的$ \text{K} $介子的热力学量在临界相变温度时的变化: (a)能量密度; (b)压强; (c)熵密度

    Fig. 7.  Thermodynamic quantities of kaon with and without the self-similarity structure influence in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 39, \, 19.6 \, \text{GeV} $ near the phase transition temperature: (a) energy density; (b) pressure; (c) entropy density.

    图 8  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \; 27, $$ 39\text{ GeV} $, $ 0-5\% $对心度, $ |y| < 0.1 $下, $ \text{K} $介子受自相似结构影响下$ (\text{K}^{+}+\text{K}^{-})/2 $的横动量谱分布. 与之比对的实验数据来自STAR实验组[63]

    Fig. 8.  Transverse momentum spectrum of $ (\text{K}^{+}+\text{K}^{-})/2 $ mesons in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6,\; 27, $$ 39\text{ GeV} $ for $ 0-5\% $ centrality, in mid-rapidity $ |y| < 0.1 $. The experimental data are from STAR[63].

    图 9  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 39\text{ GeV} $中, QGP热滴半径分别为$ r = 1, \, 1.5, \, 6\text{ fm} $的压强随温度的变化, 以及分别考虑强子气体为理想气体和受$ \text{K}, \pi $介子自相似结构影响的压强随温度的变化

    Fig. 9.  The pressure in hadron phase with and without the influence of self-similarity structure on $ \text{K} $ and πmesons in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 39 \text{ GeV} $, and the pressure of QGP droplets at radius $ r = 1, \, 1.5, \, 6\text{ fm} $ as a function of temperature T.

    图 10  不同情况下的相图结果: (1) QGP相处于热力学极限(TL), 强子气体(HG)为理想气体(IHG); (2)QGP相处于热力学极限(TL), 强子气体受自相似结构影响; (3)(4)(5)QGP热滴半径分别为$ r = 1 \text{ fm}, 1.5 \text{ fm}, 6\text{ fm} $受边界效应(BE)影响, 强子气体为理想气体; (6)QGP热滴半径为$ r = 1 \text{ fm} $受边界效应影响, 强子气体受自相似结构影响. 我们也列出了泛函重整化群(fRG)方法[64], Dyson-Schwinger方程模型[65,66]和格点QCD[42,43]在有限化学势区域的相图结果, 以便比较

    Fig. 10.  The phase diagram with considering (1) QGP in thermodynamic limit (TL) and ideal hadron gas (IHG). (2) QGP in thermodynamic limit and hadron gas (HG) with the influence of self-similarity structure (SSS). (3)(4)(5) QGP droplet with the boundary effect (BE) at radius $ r = 1 \text{ fm}, 1.5 \text{ fm}, 6\text{ fm} $ and ideal hadron gas(IHG) respectively. (6) QGP droplet with the boundary effect (BE) at radius $ r = 1 \text{ fm} $ and hadron gas with the influence of self-similarity structure (SSS). We also list the results from fRG model[64], DSE[65,66] and lattice QCD[42,43] for comparison.

    表 1  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \, 27, \, 39\text{ GeV} $, 0−5%对心度下, 通过TBFM方法求解出$ \text{K} $介子的自相似结构影响修正因子$ q_{1} $ 和 $ q_{2} $.

    Table 1.  The factors $ q_{1} $ and $ q_{2} $ for $ \text{K} $ meson in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \, 27, \, 39 \text{ GeV} $ for 0−5% centrality solved by TBFM.

    $ \sqrt{s_{\text{NN}}}/\text{GeV} $ $ T / \text{GeV} $ $ \mu_{\text{B}} / \text{GeV} $ $ r_{\text{min}}/\text{fm} $ $ r_{0}/\text{fm} $ $ q_{1} $ $ q_{2} $
    7.7 0.1424 $ \pm $ 0.00137 0.42 0.11 6.3 1.04222 $ \pm $ 0.003525 1.13941 $ \pm $ 0.010415
    11.5 0.1483 $ \pm $ 0.00142 0.316 0.11 6.5 1.04204 $ \pm $ 0.004635 1.12682 $ \pm $ 0.01063
    19.6 0.1527 $ \pm $ 0.00147 0.206 0.09 6.75 1.04129 $ \pm $ 0.002445 1.14432 $ \pm $ 0.005105
    27 0.1541 $ \pm $ 0.00148 0.156 0.1 6.8 1.04470 $ \pm $ 0.001435 1.12251 $ \pm $ 0.00039
    39 0.155 $ \pm $ 0.00149 0.112 0.1 6.85 1.04710 $ \pm $ 0.001615 1.11388 $ \pm $ 0.00012
    下载: 导出CSV
    Baidu
  • [1]

    Srivastava P K, Tiwari S K, Singh C P 2010 Phys. Rev. D 82 014023Google Scholar

    [2]

    Singh C 1993 Phys. Rep. 236 147Google Scholar

    [3]

    Satz H 2000 Rep. Prog. Phys. 63 1511Google Scholar

    [4]

    Back B, Baker M, Ballintijn M, et al 2005 Nucl. Phys. A 757 28Google Scholar

    [5]

    STAR Collaboration 2005 Nucl. Phys. A 757 102Google Scholar

    [6]

    Arsene I, Bearden I, Beavis D, et al 2005 Nucl. Phys. A 757 1Google Scholar

    [7]

    Karthein J M, Mroczek D, Acuna A R N, et al 2021 Eur. Phys. J. Plus 136 621Google Scholar

    [8]

    Mohanty B 2009 Nucl. Phys. A 830 899cGoogle Scholar

    [9]

    An X, Bluhm M, Du L, et al 2022 Nucl. Phys. A 1017 122343Google Scholar

    [10]

    Odyniec G 2019 PoS CORFU2018 201 151

    [11]

    Bzdak A, Esumi S, Koch V, otehrs 2020 Phys. Rep. 853 1Google Scholar

    [12]

    Dai T, Ding H, Cheng L, Zhang W, Wang E 2024 arXiv: 2411.068219

    [13]

    Deur A, Brodsky S J, de Téramond G F 2016 Prog. Part. Nucl. Phys. 90 1Google Scholar

    [14]

    Niida T, Miake Y 2021 AAPPS Bull. 31 12Google Scholar

    [15]

    Raghunath S 2019 AAPPS Bull. 29 16

    [16]

    Loizides C 2016 Nucl. Phys. A 956 200Google Scholar

    [17]

    Shneider M N, Pekker M 2019 arXiv: 1901.04329

    [18]

    Wong C Y, Zhang W N 2007 Int. J. Mod. Phys. E 16 3271Google Scholar

    [19]

    Gustafsson H A, Gutbrod H H, Kolb B, et al 1984 Phys. Rev. Lett. 52 1590Google Scholar

    [20]

    Danielewicz P, Odyniec G 1985 Phys. Lett. B 157 146Google Scholar

    [21]

    Wiranata A, Koch V, Prakash M, Wang X N 2014 J. Phys.: Conf. Ser. 509 012049Google Scholar

    [22]

    Zachariasen F, Zemach C 1962 Phys. Rev. 128 849Google Scholar

    [23]

    Rafelski J 1982 Phys. Rep 88 331

    [24]

    Koch P, Müller B, Rafelski J 1986 Phys. Rep. 142 167Google Scholar

    [25]

    Greiner C, Koch P, Stöcker H 1987 Phys. Rev. Lett. 58 1825Google Scholar

    [26]

    Greiner C, Rischke D H, Stöcker H, Koch P 1988 Phys. Rev. D 38 2797Google Scholar

    [27]

    Greiner C, Stöcker H 1991 Phys. Rev. D 44 3517Google Scholar

    [28]

    Mønster D 1996 Strangelets: Effects of Finite Size and Exact Color Singletness. Ph.D. Dissertation, Aarhus University, Aarhus, Denmark

    [29]

    Nordin F 2011 Quark-Gluon-Plasma at Brookhaven and CERN. Bachelor thesis, Lund University, Lund, Sweden

    [30]

    STAR Collaboration 2020 Phys. Rev. C 102 034909Google Scholar

    [31]

    Moreau P, Soloveva O, Oliva L, Song T, Cassing W, Bratkovskaya E 2019 Phys. Rev. C 100 014911Google Scholar

    [32]

    Shen C, Alzhrani S 2020 Phys. Rev. C 102 014909Google Scholar

    [33]

    Albacete J L, Guerrero-Rodríguez P, Marquet C 2019 J. High Energy Phys. 2019 73

    [34]

    Grönqvist H 2016 Fluctuations in High-Energy Particle Collisions. Theses, Université Paris Saclay (COmUE

    [35]

    Chodos A, Jaffe R L, Johnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [36]

    Ramanathan R, Gupta K K, Jha A K, Singh S S 2007 Pramana 68 757Google Scholar

    [37]

    Madsen J 1993 Phys. Rev. Lett. 70 391Google Scholar

    [38]

    Madsen J 1994 Phys. Rev. D 50 3328Google Scholar

    [39]

    Balian R, Bloch C 1970 Annals of Physics 60 401Google Scholar

    [40]

    Patra B K, Singh C P 1996 Phys. Rev. D 54 3551Google Scholar

    [41]

    Song G, Enke W, Jiarong L 1992 Phys. Rev. D 46 3211Google Scholar

    [42]

    Bazavov A, Ding H T, Hegde P, et al 2019 Phys. Lett. B 795 15Google Scholar

    [43]

    Bellwied R, Borsányi S, Fodor Z, Günther J, Katz S, Ratti C, Szabo K 2015 Phys. Lett. B 751 559Google Scholar

    [44]

    Hagedorn R 1971 Thermodynamics of strong interactions. Tech. rep., CERN

    [45]

    Wong C Y 2002 Phys. Rev. C 65 034902Google Scholar

    [46]

    Pathria R, Beale P D 2022 Formulation of quantum statistics. Fourth edition edn. (Lodon: Elseviser), pp 117–154

    [47]

    Musakhanov M 2017 EPJ Web Conf. 137 03013Google Scholar

    [48]

    Mandelbrot B B 1967 Science 156 636Google Scholar

    [49]

    Mandelbrot B B 1986 Self-affne fractal sets, I: The basic fractal dimensions (Amsterdam: Elsevier), pp 3–15

    [50]

    Tsallis C 1988 J. Stat. Phys 52 479Google Scholar

    [51]

    Abe S, Okamoto Y 2001 Nonextensive statistical mechanics and its applications, vol. 560 (Berlin: Springer Science & Business Media), pp 5–6

    [52]

    Ding H Q, Dai T T, Cheng L, Zhang W N, Wang E K 2023 Acta Phys. Sin. 72 192501Google Scholar

    [53]

    Ding H, Cheng L, Dai T, Wang E, Zhang W N 2023 Entropy 25 1655Google Scholar

    [54]

    Crater H W, Yoon J H, Wong C Y 2009 Phys. Rev. D 79 264

    [55]

    Tsallis C 2009 Introduction to nonextensive statistical mechanics: approaching a complex world, vol. 1 (New York: Springer), pp 47–129

    [56]

    Ubriaco M R 1999 Phys. Rev. E 60 165Google Scholar

    [57]

    Büyükkiliç F, Demirham D 1993 Phys. Lett. A 181 24Google Scholar

    [58]

    Feng X, Jin L, Riberdy M J 2022 Phys. Rev. Lett. 128 052003Google Scholar

    [59]

    Wang G, Liang J, Draper T, Liu K F, Yang Y B 2021 Phys. Rev. D 104 074502Google Scholar

    [60]

    Rajagopal A, Mendes R, Lenzi E 1998 Phys. Rev. Lett. 80 3907Google Scholar

    [61]

    Wang Q A 2002 Chaos, Solitons Fractals 14 765Google Scholar

    [62]

    Abe S 2001 Phys. Rev. E 63 061105Google Scholar

    [63]

    STAR Collaboration 2017 Phys. Rev. C 96 044904Google Scholar

    [64]

    Fu W J, Pawlowski J M, Rennecke F 2020 Phys. Rev. D 101 054032Google Scholar

    [65]

    Gao F, Pawlowski J M 2021 Phys. Lett. B 820 136584Google Scholar

    [66]

    Gunkel P J, Fischer C S 2021 Phys. Rev. D 104 054022Google Scholar

  • [1] 李阳, 张艳红, 盛亮, 张美, 姚志明, 段宝军, 赵吉祯, 郭泉, 严维鹏, 李国光, 胡佳琦, 李豪卿, 李郎郎. 不同厚度ST401中子能谱响应测量与分析.  , doi: 10.7498/aps.73.20241198
    [2] 周淑英, 沈婉萍, 毛鸿. 强子夸克相变表面张力解析求解.  , doi: 10.7498/aps.71.20220659
    [3] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响.  , doi: 10.7498/aps.70.20201643
    [4] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建.  , doi: 10.7498/aps.69.20200415
    [5] 袁都奇. 囚禁有限unitary费米气体的热力学性质.  , doi: 10.7498/aps.65.180302
    [6] 李洪云, 尹妍妍, 王青, 王立飞. 平行电磁场中里德堡氢原子的自相似结构研究.  , doi: 10.7498/aps.64.180502
    [7] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应.  , doi: 10.7498/aps.63.170501
    [8] 杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友. RIKEN介观器件腔中粒子输运过程的混沌性质及分形自相似结构研究.  , doi: 10.7498/aps.62.080505
    [9] 沈毅, 徐焕良. 加权网络权重自相似评判函数及其社团结构检测.  , doi: 10.7498/aps.59.6022
    [10] 廖龙光, 付虹, 傅秀军. 十二次对称准周期结构的自相似变换及准晶胞构造.  , doi: 10.7498/aps.58.7088
    [11] 赖小明, 卞保民, 杨 玲, 杨 娟, 卞 牛, 李振华, 贺安之. 非奇异宇宙的理想气体自相似模型.  , doi: 10.7498/aps.57.7955
    [12] 冯 杰, 徐文成, 刘伟慈, 李书贤, 刘颂豪. 高阶色散效应常系数Ginzburg-Landau方程自相似脉冲演化的解析分析.  , doi: 10.7498/aps.57.4978
    [13] 赖祥军, 罗志全, 刘晶晶, 刘宏林. 超新星核中的夸克相变及夸克质量效应.  , doi: 10.7498/aps.57.1535
    [14] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响.  , doi: 10.7498/aps.56.437
    [15] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性.  , doi: 10.7498/aps.55.6667
    [16] 戴子高, 陆埮, 彭秋和. 中子星内部非奇异-奇异夸克物质的相变.  , doi: 10.7498/aps.42.1210
    [17] 吴建斌, 王志成. Jahn-Teller效应和LiNbO3的结构相变(Ⅱ).  , doi: 10.7498/aps.40.1313
    [18] 钟锡华, 周岳明, 朱亚芬. 自相似时间信息的谱研究.  , doi: 10.7498/aps.40.1934
    [19] 钟锡华. 自相似结构的谱函数.  , doi: 10.7498/aps.39.59
    [20] 张珉, 陶瑞宝, 周世勋. 具有自相似结构的非均匀复合媒质质量分布的标度指数.  , doi: 10.7498/aps.37.1987
计量
  • 文章访问数:  393
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-02

/

返回文章
返回
Baidu
map