Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk

Gu Tong-Kai Wang Lan-Lan Guo Yang Jiang Wei-Tao Shi Yong-Sheng Yang Shuo Chen Jin-Ju Liu Hong-Zhong

Citation:

Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk

Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The microlens-assisted microscope realizes super-resolution imaging and observation, and has the advantages of no marking, no damage, real-time, localization, and good environmental compatibility. Liquid microlens arrays with uniformity and easy manipulation can realize super-resolution imaging without complicated mechanical scanning and driving. However, simply and efficiently controlling the imaging distance is a key technical challenge to the realization of super-resolution imaging of microlens. In this paper, the uniform depths of photoresist microholes on light disk are fabricated by ultraviolet exposure technology. Using liquid self-assembly technology, the microholes are filled with glycerol droplets, and thus ensuring the near-field imaging distance of the microlens. The reconfigurable super-resolution of 226-nm-wide grating line and the imaging magnification of 1.59 times are observed under the optical microscope. At present, the theory of super-resolution imaging based on microlens is not unified and perfect. In this paper, the Abbe imaging principle is used to explain the imaging magnification and super-resolution characteristics. Therefore, the liquid microlens arrays integrated on the light disk show great potential application in optical nanometer measurements and sensing devices.
      Corresponding author: Wang Lan-Lan, lanlan1900@mail.xjtu.edu.cn ; Liu Hong-Zhong, hzliu@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52075433, 52011530186, 51625504, 51827805), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2021ZDLGY12-04), and the Specialized Research Fund for the Doctoral Program of High Education, China (Grant Nos. 2016M600785, 2016BSHEDZZ126, 2018T111048).
    [1]

    Ling J Z, Wang Y C, Liu X, Wang X R 2021 Opt. Lett. 46 1265Google Scholar

    [2]

    Chen L W, Zhou Y, Li Y, Hong M H 2019 Appl. Phys. Rev. 6 021304Google Scholar

    [3]

    Hüser L, Pahl T, Künne M, Lehmann P 2022 J. Opt. Microsyst. 2 044501Google Scholar

    [4]

    Wang Z B, Guo W, Li L, Luk'yanchuk B S, Khan A, Liu Z, Chun Z C, Hong M H 2011 Nat. Commun. 2 218Google Scholar

    [5]

    周锐, 吴梦雪, 沈飞, 洪明辉 2017 66 140702Google Scholar

    Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702Google Scholar

    [6]

    宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦 2020 69 134201Google Scholar

    Song Y, Yang X B, Yan B, Wang C, Sun J M, Xiong D X 2020 Acta Phys. Sin. 69 134201Google Scholar

    [7]

    王建国, 杨松林, 叶永红 2018 67 214209Google Scholar

    Wang J G, Yang S L, Ye Y H 2018 Acta Phys. Sin. 67 214209Google Scholar

    [8]

    Darafsheh A 2022 J. Appl. Phys. 131 031102Google Scholar

    [9]

    Pei Y, Zang J J, Yang S L, Wang J G, Cao Y Y, Ye Y H 2021 ACS Appl. Nano Mater. 4 11281Google Scholar

    [10]

    Yang S L, Ye Y H, Shi Q F, Zhang J Y 2020 J. Phys. Chem. C 124 25951Google Scholar

    [11]

    Gu G Q, Zhang P C, Chen S H, Zhang Y, Yang H 2021 Photonics. Res. 9 1157Google Scholar

    [12]

    Zhang P P, Yan B, Gu G Q, Yu Z T, Chen X, Wang Z B, Yang H 2022 Sensor. Actuat. B-Chem. 357 131401Google Scholar

    [13]

    Kwon S, Park J, Kim K, Cho Y, Lee M 2022 Light Sci. Appl. 11 32Google Scholar

    [14]

    Gu G Q, Song J, Ming C, Xiao P, Liang H D, Qu J L 2018 Nanoscale 10 14182Google Scholar

    [15]

    Xie Y, Cai D, Pan J, Zhou N, Guo X, Wang P, Tong L 2022 Adv. Opt. Mater. 10 2102269Google Scholar

    [16]

    Su S J, Liang J S, Li X J, Xin W W, Chen L, Yin P H, Wang Z Z, Ye X S, Xiao J P, Wang D 2021 Adv. Mater. Technol-US. 6 2100449Google Scholar

    [17]

    Darafsheh A 2021 J. Phys. Photonics. 3 022001Google Scholar

    [18]

    Wang F F, Liu L Q, Yu H B, Wen Y D, Yu P, Liu Z, Wang Y C, Li W J 2016 Nat. Commun. 7 13748Google Scholar

    [19]

    Wang S Y, Zhang D X, Zhang H J, Han X, Xu R 2015 Microsc. Res. Techniq. 78 1128Google Scholar

    [20]

    Zhang T Y, Yu H B, Li P, Wang X D, Wang F F, Shi J L, Liu Z, Yu P, Yang W G, Wang Y C, Liu L Q 2020 ACS Appl. Mater. Inter. 12 48093Google Scholar

    [21]

    Chen X X, Wu T L, Gong Z Y, Guo J H, Liu X S, Zhang Y, Li Y C, Ferraro P, Li B J 2021 Light Sci. Appl. 12 242Google Scholar

    [22]

    李姮, 张熙熙, 张垚, 李宇超, 李宝军 2022 光学学报 42 0411003Google Scholar

    Li H, Chen X X, Zhang Y, Li Y C, Li B J 2022 Acta. Opt. Sin. 42 0411003Google Scholar

    [23]

    Jia B L, Wang F F, Chan H Y, Zhang G L, Li W J 2019 Microsyst. Nanoeng. 5 13Google Scholar

    [24]

    Gu T K, Wang L L, Li R, Dong Y Z, Zhang Y J, Jia M C, Jiang W T, Liu H Z 2018 Opt. Commun. 428 89Google Scholar

    [25]

    Zhang H C, Qi T Y, Zhu X Y, Zhou L J, Li Z H, Zhang Y F, Yang W C, Yang J J, Peng Z L, Zhang G M, Wang F, Guo P F, Lan H B 2021 ACS Appl. Mater. Inter. 13 36295Google Scholar

    [26]

    Wang L, Luo Y, Liu Z Z, Feng X M, Lu B H 2018 Appl. Surf. Sci. 442 417Google Scholar

    [27]

    Wang L L, Liu H Z, Jiang W T, Li R, Li F, Yang Z B, Yin L, Shi Y S, Chen B D 2015 J. Mater. Chem. C 3 5896Google Scholar

    [28]

    Wang L L, Li F, Liu H Z, Jiang W T, Niu D, Li R, Yin L, Shi Y S, Chen B D 2015 ACS Appl. Mater. Inter. 7 21416Google Scholar

    [29]

    Xu M, Zhou Z W, Wang Z, Lu H B 2020 ACS Appl. Mater. Inter. 12 7826Google Scholar

    [30]

    Chen X X, Wu T L, Gong Z Y, Li Y C, Zhang Y, Li B J 2020 Photonics. Res. 8 225Google Scholar

    [31]

    Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano. Lett. 16 4862Google Scholar

    [32]

    叶燃, 许楚, 汤芬, 尚晴晴, 范瑶, 李加基, 叶永红, 左超 2022 红外与激光工程 51 20220086Google Scholar

    Ye R, Xu C, Tang F, Shang Q Q, Fan Y, Li J J, Ye Y H, Zuo C 2022 Infrared Laser Eng. 51 20220086Google Scholar

    [33]

    Duan Y, Barbastathis G, Zhang B 2013 Opt. Lett. 38 2988Google Scholar

    [34]

    Zhou S, Deng Y B, Zhou W C, Yu M X, Urbach H P, Wu Y H 2017 Appl. Phys. B 123 236Google Scholar

  • 图 1  阿贝成像过程示意图

    Figure 1.  Schematic diagram of the Abbe imaging process.

    图 2  光盘上液体微透镜阵列制备的示意图 (a)光盘光栅; (b)旋涂光刻胶; (c)紫外曝光; (d)疏水处理; (e)自组装过程

    Figure 2.  Schematic diagram of the fabrication process of liquid microlens arrays on light disk grating: (a) Disk grating; (b) spin-on photoresist; (c) UV exposure; (d) hydrophobic treatment; (e) liquid self-assembly process.

    图 3  光盘及其观测结果 (a)通过3000×显微镜; (b)通过扫描电子显微镜

    Figure 3.  Blue disk and its observation: (a) Through 3000× microscopy; (b) through SEM.

    图 4  液体自组装前后模板的共聚焦扫描结果 (a) 微孔阵列; (b)微孔轮廓和结构参数; (c)微透镜阵列; (d) 微透镜轮廓和结构参数

    Figure 4.  Observation of template before and after liquid self-assembly process through CLSM: (a) Microhole arrays; (b) profile and parameters of microholes; (c) liquid microlens arrays (LMLAs); (d) profile and parameters of microlenses.

    图 5  光盘光栅的金相显微镜观测 (a) 成像示意图; (b) 实验全局图; (c) 通过微透镜阵列; (d) 未通过微透镜阵列

    Figure 5.  Observation of blue disk gratings through metalloscope: (a) Schematic diagram of experiment; (b) figure of experimental equipment; (c) through LMLAs; (d) not through LMLAs.

    图 6  光盘光栅透过微透镜在5000×光学显微镜下的观测 (a) 通过微透镜阵列成像; (b) 在(a)图中蓝线对应的灰度分布

    Figure 6.  Observation of blue disk gratings through 5000× microscope: (a) Image grating through LMLAs; (b) the grayscale of blue line in (a).

    图 7  液体微透镜阵列对光盘光栅的可重构超分辨成像

    Figure 7.  Reconstructable super-resolution imaging of optical disk gratings by LMLA.

    图 8  光盘上液体微透镜成像过程的模拟 (a)设置物光栅; (b)微透镜所在平面光强分布; (c)微透镜焦平面光强分布; (d)匹配滤波器

    Figure 8.  Simulation of imaging process of liquid microlens on blue disk: (a) Set gratings; (b) light intensity of microlens surface; (c) light intensity of microlens focal plane; (d) light wave filter.

    图 9  光盘光栅再现像与剖线 (a)未用滤波器的再现像; (b)用滤波器的再现像; (c) 图(a)中心横向截线上灰度分布; (d)图(b)中心横向截线上灰度分布

    Figure 9.  Reconstructed images of blue disk gratings and their section lines: (a) Reconstructed image without filter; (b) reconstructed image with filter; (c) section line of (a); (d) section line of (b).

    图 10  微透镜聚焦的FDTD模型与结果 (a) FDTD模型; (b) xy平面光强分布; (c) y = 0时x方向上的光强分布; (d) x = 53.5 μm处y方向上的光强分布

    Figure 10.  FDTD model and results of microlens focusing: (a) FDTD modeling; (b) light intensity in xy plane; (c) light intensity at y = 0 μm; (d) light intensity at x = 53.5 μm.

    Baidu
  • [1]

    Ling J Z, Wang Y C, Liu X, Wang X R 2021 Opt. Lett. 46 1265Google Scholar

    [2]

    Chen L W, Zhou Y, Li Y, Hong M H 2019 Appl. Phys. Rev. 6 021304Google Scholar

    [3]

    Hüser L, Pahl T, Künne M, Lehmann P 2022 J. Opt. Microsyst. 2 044501Google Scholar

    [4]

    Wang Z B, Guo W, Li L, Luk'yanchuk B S, Khan A, Liu Z, Chun Z C, Hong M H 2011 Nat. Commun. 2 218Google Scholar

    [5]

    周锐, 吴梦雪, 沈飞, 洪明辉 2017 66 140702Google Scholar

    Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702Google Scholar

    [6]

    宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦 2020 69 134201Google Scholar

    Song Y, Yang X B, Yan B, Wang C, Sun J M, Xiong D X 2020 Acta Phys. Sin. 69 134201Google Scholar

    [7]

    王建国, 杨松林, 叶永红 2018 67 214209Google Scholar

    Wang J G, Yang S L, Ye Y H 2018 Acta Phys. Sin. 67 214209Google Scholar

    [8]

    Darafsheh A 2022 J. Appl. Phys. 131 031102Google Scholar

    [9]

    Pei Y, Zang J J, Yang S L, Wang J G, Cao Y Y, Ye Y H 2021 ACS Appl. Nano Mater. 4 11281Google Scholar

    [10]

    Yang S L, Ye Y H, Shi Q F, Zhang J Y 2020 J. Phys. Chem. C 124 25951Google Scholar

    [11]

    Gu G Q, Zhang P C, Chen S H, Zhang Y, Yang H 2021 Photonics. Res. 9 1157Google Scholar

    [12]

    Zhang P P, Yan B, Gu G Q, Yu Z T, Chen X, Wang Z B, Yang H 2022 Sensor. Actuat. B-Chem. 357 131401Google Scholar

    [13]

    Kwon S, Park J, Kim K, Cho Y, Lee M 2022 Light Sci. Appl. 11 32Google Scholar

    [14]

    Gu G Q, Song J, Ming C, Xiao P, Liang H D, Qu J L 2018 Nanoscale 10 14182Google Scholar

    [15]

    Xie Y, Cai D, Pan J, Zhou N, Guo X, Wang P, Tong L 2022 Adv. Opt. Mater. 10 2102269Google Scholar

    [16]

    Su S J, Liang J S, Li X J, Xin W W, Chen L, Yin P H, Wang Z Z, Ye X S, Xiao J P, Wang D 2021 Adv. Mater. Technol-US. 6 2100449Google Scholar

    [17]

    Darafsheh A 2021 J. Phys. Photonics. 3 022001Google Scholar

    [18]

    Wang F F, Liu L Q, Yu H B, Wen Y D, Yu P, Liu Z, Wang Y C, Li W J 2016 Nat. Commun. 7 13748Google Scholar

    [19]

    Wang S Y, Zhang D X, Zhang H J, Han X, Xu R 2015 Microsc. Res. Techniq. 78 1128Google Scholar

    [20]

    Zhang T Y, Yu H B, Li P, Wang X D, Wang F F, Shi J L, Liu Z, Yu P, Yang W G, Wang Y C, Liu L Q 2020 ACS Appl. Mater. Inter. 12 48093Google Scholar

    [21]

    Chen X X, Wu T L, Gong Z Y, Guo J H, Liu X S, Zhang Y, Li Y C, Ferraro P, Li B J 2021 Light Sci. Appl. 12 242Google Scholar

    [22]

    李姮, 张熙熙, 张垚, 李宇超, 李宝军 2022 光学学报 42 0411003Google Scholar

    Li H, Chen X X, Zhang Y, Li Y C, Li B J 2022 Acta. Opt. Sin. 42 0411003Google Scholar

    [23]

    Jia B L, Wang F F, Chan H Y, Zhang G L, Li W J 2019 Microsyst. Nanoeng. 5 13Google Scholar

    [24]

    Gu T K, Wang L L, Li R, Dong Y Z, Zhang Y J, Jia M C, Jiang W T, Liu H Z 2018 Opt. Commun. 428 89Google Scholar

    [25]

    Zhang H C, Qi T Y, Zhu X Y, Zhou L J, Li Z H, Zhang Y F, Yang W C, Yang J J, Peng Z L, Zhang G M, Wang F, Guo P F, Lan H B 2021 ACS Appl. Mater. Inter. 13 36295Google Scholar

    [26]

    Wang L, Luo Y, Liu Z Z, Feng X M, Lu B H 2018 Appl. Surf. Sci. 442 417Google Scholar

    [27]

    Wang L L, Liu H Z, Jiang W T, Li R, Li F, Yang Z B, Yin L, Shi Y S, Chen B D 2015 J. Mater. Chem. C 3 5896Google Scholar

    [28]

    Wang L L, Li F, Liu H Z, Jiang W T, Niu D, Li R, Yin L, Shi Y S, Chen B D 2015 ACS Appl. Mater. Inter. 7 21416Google Scholar

    [29]

    Xu M, Zhou Z W, Wang Z, Lu H B 2020 ACS Appl. Mater. Inter. 12 7826Google Scholar

    [30]

    Chen X X, Wu T L, Gong Z Y, Li Y C, Zhang Y, Li B J 2020 Photonics. Res. 8 225Google Scholar

    [31]

    Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano. Lett. 16 4862Google Scholar

    [32]

    叶燃, 许楚, 汤芬, 尚晴晴, 范瑶, 李加基, 叶永红, 左超 2022 红外与激光工程 51 20220086Google Scholar

    Ye R, Xu C, Tang F, Shang Q Q, Fan Y, Li J J, Ye Y H, Zuo C 2022 Infrared Laser Eng. 51 20220086Google Scholar

    [33]

    Duan Y, Barbastathis G, Zhang B 2013 Opt. Lett. 38 2988Google Scholar

    [34]

    Zhou S, Deng Y B, Zhou W C, Yu M X, Urbach H P, Wu Y H 2017 Appl. Phys. B 123 236Google Scholar

Metrics
  • Abstract views:  4979
  • PDF Downloads:  135
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2022
  • Accepted Date:  12 February 2023
  • Available Online:  22 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回
Baidu
map