搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性

李振武

引用本文:
Citation:

单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性

李振武

Opto-electronic properties of the single-walled carbon nanotube film and melamine formaldehyde resin composite

Li Zhen-Wu
PDF
导出引用
  • 单壁碳纳米管能够强烈吸收光线,尤其是在近红外区域,并能将光能转换成热能. 同时,单壁碳纳米管还具有相当大的将热能转换成电能的能力. 通过真空过滤方法,将由化学气相沉积生成的单壁碳纳米管阵列制备成单壁碳纳米管膜. 根据研究的需要设计了一个简单的单壁碳纳米管膜光伏性质测试实验装置,并在其两端成功地实现了由红外光转换为电压输出. 通过功能化步骤,制备了单壁碳纳米管/三聚氰胺甲醛树脂复合材料膜,实验结果表明该复合材料能产生符号相反的输出电压. 这预示着单壁碳纳米管及其三聚氰胺甲醛树脂复合材料在光电领域具有良好的应用前景.
    The single-walled carbon nanotube (SWCNT) can strongly absorb light, particularly in the near infrared region, and can convert it into thermal energy, while the SWCNT also has a great capacity of converting thermal energy into electrical energy. In this paper, by means of vacuum filtering, SWCNT film is prepared by SWCNT arrays generated by the chemical vapor deposition. A simple experimental device of SWCNT is designed and the conversion from the infrared light to voltage output is successfully achieved. The SWCNT/melamine formaldehyde resin composite film is prepared by the functional steps. The experimental results show that the composite material can produce an output voltage of opposite sign, which indicates that the SWCNT and melamine formaldehyde resin composite material have good application prospect in the field of photo-electrical applications.
    • 基金项目: 山东省自然科学基金(批准号:Y2008A16)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. Y2008A16).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Li Z W 2012 Acta Phys. Sin. 61 016103 (in Chinese) [李振武 2012 61 016103]

    [3]

    Li Z W 2013 Acta Phys. Sin. 62 096101 (in Chinese) [李振武 2013 62 096101]

    [4]

    Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501

    [5]

    Karimov K S, Chani M T S, Khalid F A, Khan A, Khan R 2012 Chin. Phys. B 21 016102

    [6]

    Wu M H, Li X, Pan D, Liu L, Yang X X, Xu Z, Wang W L, Sui Y, Bai X D 2013 Chin. Phys. B 22 086101

    [7]

    Feng W, Yi W H, Xu Y L, Lian Y Q, Wang X G, Yoshino K 2003 Acta Phys. Sin. 52 1272 (in Chinese) [封伟, 易文辉, 徐友龙, 连彦青, 王晓工, 吉野勝美 2003 52 1272]

    [8]

    Qu J R, Zheng J B, Wang C F, Wu G R, Wang X Y 2013 Acta Phys. Sin. 62 128801 (in Chinese) [屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳 2013 62 128801]

    [9]

    Lai Y H, Lin C Y, Chen H W, Chen J G, Kung C W, Vittal R, Ho K C 2010 J. Mater. Chem. 20 9379

    [10]

    Zhang X R, Lin Y H, Zhang J F, He D Q, Wang D J 2010 Acta Phys. Chim. Sin. 26 2733 (in Chinese) [张晓茹, 林艳红, 张健夫, 何冬青, 王德军 2010 物理化学学报 26 2733]

    [11]

    Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘旭, 王孔嘉 2005 54 1919]

    [12]

    Itkis M E, Borondics F, Yu A , Haddon R C 2006 Science 312 413

    [13]

    Chakravarty P, Marches R, Zimmerman N S, Swafford A D E, Bajaj P, Musselman I H, Pantano P, Draper R K, Vitetta E S 2008 Proc. Natl. Acad. Sci. USA 105 8697

    [14]

    Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba D N, Yumura M, Hata K 2009 Proc. Natl. Acad. Sci. USA 106 6044

    [15]

    Zhang S L, Xia M G, Zhao S M, Xu T , Zhang E H 2003 Phys. Rev. B 68 075415

    [16]

    Yu C, Shi L, Yao Z, Li D Y, Majumdar A 2005 Nano Lett. 5 1842

    [17]

    Barisic N, Gaal R, Kezsmarki I, Mihaly G, Forro L 2002 Phys. Rev. B 65 241403

    [18]

    Baxendale M, Lim K G, Amaratunga G A J 2000 Phys. Rev. B 61 12705

    [19]

    Shim M, Javey A, Kam N W S, Dai H J 2001 J. Am. Chem. Soc. 123 11512

    [20]

    Stokes P, Liu L W, Zou J H, Zhai L, Huo Q, Khondaker S I 2009 Appl. Phys. Lett. 94 042110

    [21]

    Sarker B K, Arif M, Khondaker S I 2010 Carbon 48 1539

    [22]

    Pradhan B, Kohlmeyer R R, Setyowati K, Owen H A, Chen J 2009 Carbon 47 1686

    [23]

    St-Antoine B C, Menard D, Martel R 2009 Nano Lett. 9 3503

    [24]

    Lien D H, Hsu W K, Zan H W, Tai N H, Tsai C H 2006 Adv. Mater. 18 98

    [25]

    Zhan G D, Kuntz J D, Mukherjee A K, Zhu P, Koumoto K 2006 Scripta Mater. 54 77

    [26]

    Levesque I, Gao X, Klug D D, Tse J S, Ratcliffe C I, Leclerc M 2005 React. Funct. Polym. 65 23

    [27]

    Moniruzzaman M, Winey K I 2006 Macromolecules 39 5194

    [28]

    Ajayan P M, Terrones M, de la Guardia A, Huc V, Grobert N, Wei B Q, Lezec H, Ramanath G, Ebbesen T W 2002 Science 296 705

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Li Z W 2012 Acta Phys. Sin. 61 016103 (in Chinese) [李振武 2012 61 016103]

    [3]

    Li Z W 2013 Acta Phys. Sin. 62 096101 (in Chinese) [李振武 2013 62 096101]

    [4]

    Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501

    [5]

    Karimov K S, Chani M T S, Khalid F A, Khan A, Khan R 2012 Chin. Phys. B 21 016102

    [6]

    Wu M H, Li X, Pan D, Liu L, Yang X X, Xu Z, Wang W L, Sui Y, Bai X D 2013 Chin. Phys. B 22 086101

    [7]

    Feng W, Yi W H, Xu Y L, Lian Y Q, Wang X G, Yoshino K 2003 Acta Phys. Sin. 52 1272 (in Chinese) [封伟, 易文辉, 徐友龙, 连彦青, 王晓工, 吉野勝美 2003 52 1272]

    [8]

    Qu J R, Zheng J B, Wang C F, Wu G R, Wang X Y 2013 Acta Phys. Sin. 62 128801 (in Chinese) [屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳 2013 62 128801]

    [9]

    Lai Y H, Lin C Y, Chen H W, Chen J G, Kung C W, Vittal R, Ho K C 2010 J. Mater. Chem. 20 9379

    [10]

    Zhang X R, Lin Y H, Zhang J F, He D Q, Wang D J 2010 Acta Phys. Chim. Sin. 26 2733 (in Chinese) [张晓茹, 林艳红, 张健夫, 何冬青, 王德军 2010 物理化学学报 26 2733]

    [11]

    Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘旭, 王孔嘉 2005 54 1919]

    [12]

    Itkis M E, Borondics F, Yu A , Haddon R C 2006 Science 312 413

    [13]

    Chakravarty P, Marches R, Zimmerman N S, Swafford A D E, Bajaj P, Musselman I H, Pantano P, Draper R K, Vitetta E S 2008 Proc. Natl. Acad. Sci. USA 105 8697

    [14]

    Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba D N, Yumura M, Hata K 2009 Proc. Natl. Acad. Sci. USA 106 6044

    [15]

    Zhang S L, Xia M G, Zhao S M, Xu T , Zhang E H 2003 Phys. Rev. B 68 075415

    [16]

    Yu C, Shi L, Yao Z, Li D Y, Majumdar A 2005 Nano Lett. 5 1842

    [17]

    Barisic N, Gaal R, Kezsmarki I, Mihaly G, Forro L 2002 Phys. Rev. B 65 241403

    [18]

    Baxendale M, Lim K G, Amaratunga G A J 2000 Phys. Rev. B 61 12705

    [19]

    Shim M, Javey A, Kam N W S, Dai H J 2001 J. Am. Chem. Soc. 123 11512

    [20]

    Stokes P, Liu L W, Zou J H, Zhai L, Huo Q, Khondaker S I 2009 Appl. Phys. Lett. 94 042110

    [21]

    Sarker B K, Arif M, Khondaker S I 2010 Carbon 48 1539

    [22]

    Pradhan B, Kohlmeyer R R, Setyowati K, Owen H A, Chen J 2009 Carbon 47 1686

    [23]

    St-Antoine B C, Menard D, Martel R 2009 Nano Lett. 9 3503

    [24]

    Lien D H, Hsu W K, Zan H W, Tai N H, Tsai C H 2006 Adv. Mater. 18 98

    [25]

    Zhan G D, Kuntz J D, Mukherjee A K, Zhu P, Koumoto K 2006 Scripta Mater. 54 77

    [26]

    Levesque I, Gao X, Klug D D, Tse J S, Ratcliffe C I, Leclerc M 2005 React. Funct. Polym. 65 23

    [27]

    Moniruzzaman M, Winey K I 2006 Macromolecules 39 5194

    [28]

    Ajayan P M, Terrones M, de la Guardia A, Huc V, Grobert N, Wei B Q, Lezec H, Ramanath G, Ebbesen T W 2002 Science 296 705

  • [1] 王天赐, 夏乾善, 黄信佐, 王永正, 刘斌, 张晋通, 黎涛. 单壁碳纳米管/聚醚酰亚胺电磁屏蔽薄膜的制备与性能.  , 2024, 73(17): 178101. doi: 10.7498/aps.73.20240822
    [2] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略.  , 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [3] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究.  , 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [4] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能.  , 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [5] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军. 钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性.  , 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [6] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究.  , 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [7] 袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒. VO2/AZO复合薄膜的制备及其光电特性研究.  , 2014, 63(21): 218101. doi: 10.7498/aps.63.218101
    [8] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究.  , 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [9] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响.  , 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [10] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察.  , 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [11] 李振武. 纳米CdS/碳纳米管复合材料的光电特性.  , 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [12] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究.  , 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [13] 秦威, 张振华, 刘新海. 卷曲效应对单壁碳纳米管电子结构的影响.  , 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [14] 张俊, 谭平恒, 赵伟杰. 利用径向呼吸模及其倍频模的共振特性精确测定单壁碳纳米管的电子跃迁能量.  , 2010, 59(11): 7966-7973. doi: 10.7498/aps.59.7966
    [15] 刘贵立, 杨忠华, 方戈亮. 镁/镀镍碳纳米管界面特性电子理论研究.  , 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [16] 孙建平, 翁家宝, 黄小珠, 马琳璞. 聚(2,5-二丁氧基)对苯乙炔/多壁碳纳米管复合材料的制备和性能研究.  , 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [17] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响.  , 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [18] 马燕萍, 尚学府, 顾智企, 李振华, 王 淼, 徐亚伯. 单壁碳纳米管在场发射显示器中的应用研究.  , 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [19] 梁君武, 胡慧芳, 韦建卫, 彭 平. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响.  , 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [20] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算.  , 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
计量
  • 文章访问数:  5846
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-24
  • 修回日期:  2014-02-12
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map