Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of atmospheric optical turbulence model— methods and progress

Wu Xiao-Qing Yang Qi-Ke Huang Hong-Hua Qing Chun Hu Xiao-Dan Wang Ying-Jian

Citation:

Analysis of atmospheric optical turbulence model— methods and progress

Wu Xiao-Qing, Yang Qi-Ke, Huang Hong-Hua, Qing Chun, Hu Xiao-Dan, Wang Ying-Jian
PDF
HTML
Get Citation
  • Stratification is a significant characteristic of atmospheric turbulence, especially high-altitude turbulence. At a fixed height, the real optical turbulence value fluctuates by 1–2 orders of magnitude or even greater on the average value. The turbulence profile model based on the observed data is a statistical average result. It can neither represent the stratification characteristics of an actual atmospheric turbulence profile nor have the prediction function, and can not fully meet the demand of optical engineering. Owing to the limitation of the capacity and speed of the computer, it is impossible to solve the Navier Stokes equation through direct numerical simulation (DNS) and large eddy simulation (LES) to predict the optical turbulence. The solution is to predict the conventional gas parameters through the mesoscale weather numerical prediction model MM5/ WRF, and then calculate the turbulence parameters through the turbulence parameterization scheme. In this paper, the prediction methods and research results of $ C_n^2 $ in surface layer,boundary layer and free atmosphere layer are introduced. Tatarski formula is derived in detail from the turbulence kinetic energy prediction equation and the temperature fluctuation variance prediction equation, and the physical meaning and applicable conditions of the formula are summarized. The latest research progress of neural network prediction and Antarctic astronomical site selection is mainly introduced. The characteristics and differences among different models, such as the empirical model fitted with experimental data, the parameter model with conventional meteorological parameters based on Kolmogorov turbulence theory, the prediction model related to mesoscale meteorological model, and the neural network method based on data driving and so on, are analyzed. It is emphasized that Kolmogorov turbulence theory is the theoretical basis of the existing atmospheric optical turbulence parameter models.
      Corresponding author: Wu Xiao-Qing, xqwu@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91752103, 41576185), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. CXJJ-19S028).
    [1]

    Beland R 1993 The Infrared and ElectroOpticalSystems Handbook, SPIE (Bellingham, WA: Optical Engineering Press) p211

    [2]

    吴晓庆, 马成胜, 曾宗泳 1996 量子电子学 13 385

    Wu X Q, Ma C S, Zeng Z Y 1996 Chin. J. Quantum Electron. 13 385

    [3]

    吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭 2023 72 069201Google Scholar

    Wu X Q, Yang Q K, Huang H H, Qing C, Hu X D, Wang Y J 2023 Acta Phys. Sin. 72 069201Google Scholar

    [4]

    张兆顺, 崔桂香, 许春晓 2002 力学与实践 24 1Google Scholar

    Zhang Z S, Cui G X, Xu C X 2002 Mech. Eng. 24 1Google Scholar

    [5]

    吴晓庆 2017 激光与光电子学进展 54 010001Google Scholar

    Wu X Q 2017 Laser Optoelectron. Prog. 54 010001Google Scholar

    [6]

    Coulman C E, Andre J C, Lacarrere P, Guillingham P R 1986 Publ. Astron. Soc. Pac. 98 376Google Scholar

    [7]

    Masciadri E, Vernin J, Bougeault P 1999 Astron. Astrophys. Suppl. Ser. 137 185Google Scholar

    [8]

    Lascaux F, Masciadri E, Hagelin S 2010 Mon. Not. R. Astron. Soc. 403 1714Google Scholar

    [9]

    Wyngaard J C, Izumi Y, Collins S A 1971 J. Opt. Soc. Am. 61 1646Google Scholar

    [10]

    AndreasE L 1988 J. Opt. Soc. Am. 5 481Google Scholar

    [11]

    Davidson K L, Schacher G E, Fairall C W, Goroch A K 1981 Appl. Opt. 20 2919Google Scholar

    [12]

    Rachele H, Tunick A 1992 Proceedings, Battlefield Atmospherics Conference, White Sands Missile Range New Mexico, SPIE 1688 251

    [13]

    Tunick A D 1998 U. S. Army Research Laboratory, ARL-TR-1615

    [14]

    Hill R J 1980 J. Opt. Soc. Am. 70 1192Google Scholar

    [15]

    Wyngaard J C 1973 On Surface Layer Turbulence, in Workshop of Micrometeorology (Boston: American Meteorological Society) pp101–149

    [16]

    Kaimal J C, Wyngaard J C, Haugen D A, Cote O R, Izumi Y 1976 J. Atmos. Sci. 33 2152Google Scholar

    [17]

    Walters D L, Kunkel K E 1981 J. Opt. Soc. Am. 71 397Google Scholar

    [18]

    Kukharets V P, Tsvang L R 1980 Izv. Atmos. Oceanic Phys. 16 73

    [19]

    Murphy E A, Dewan E M, Sheldon S M 1985 in Adaptive Optics, Proc. SPIE 551 156

    [20]

    Andrews L C, Phillips R L, Crabbs R, Wayne D, Leclerc T, Sauer P 2010 Proc. SPIE 7588 758809Google Scholar

    [21]

    Andrews L C, Phillips R L, Crabbs R, Wayne D, Leclerc T, Sauer P 2012 Proc. SPIE 8238 82380FGoogle Scholar

    [22]

    吴晓庆, 朱行听, 黄宏华, 胡顺星 2012 光学学报 32 0701004Google Scholar

    Wu X Q, Zhu X T, Huang H H, Hu S X 2012 Acta Opt. Sin. 32 0701004Google Scholar

    [23]

    吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩 2017 66 039201Google Scholar

    Wu X Q, Tian Q G, Jin X M, Jiang P, Qing C, Cai J, Zhou H Y 2017 Acta Phys. Sin. 66 039201Google Scholar

    [24]

    吴晓庆, 王英俭, 曾宗泳, 马成胜, 袁仁民 2002 气象学报 60 1Google Scholar

    Wu X Q, Wang Y J, Zeng Z Y, Ma C S, Yuan R M 2002 Acta Meteorol. Sin. 60 1Google Scholar

    [25]

    Burk S D 1980 J. Appl. Meteor. 19 562Google Scholar

    [26]

    吴晓庆, 王英俭, 曾宗泳, 龚知本 2002 强激光与粒子束 14 819

    Wu X Q, Wang Y J, Zeng Z Y, Gong Z 2002 High Power Laser Part. Beams 14 819

    [27]

    Cheinet S, Beljaars A 2011 Boundary-Layer Meteorol 138 453Google Scholar

    [28]

    许利明 2008 硕士论文 (合肥: 中国科学院大学)

    Xu L M 2008 M. S. Thesis (Hefei: University of Chinese Academy of Sciences) (in Chinese)

    [29]

    Qing C, Wu X Q, Li X B, Zhu W Y, Qiao C H, Rao R Z, Mei H P 2016 Opt. Express 24 13303Google Scholar

    [30]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [31]

    Wang Y, Basu S 2016 Opt. Lett. 41 2334Google Scholar

    [32]

    Su C D, Wu X Q, Luo T, Wu S, Qing C 2020 Appl. Opt. 59 3699Google Scholar

    [33]

    吴晓庆 2019 安徽师范大学学报自然科学版 (特约稿) 42 511

    Wu X Q 2019 J. Anhui Normal Univ. (Nat. Sci.) 42 511

    [34]

    吴晓庆 2014 安徽师范大学学报(自然科学版) (特约稿) 37 511

    Wu X Q 2014 J. Anhui Normal Univ. (Nat. Sci.) 37 511

    [35]

    Corrsin S 1951 J. Appl. Phys. 22 469Google Scholar

    [36]

    Dewan E M 1980 Optical Turbulence Forecasting: A turorial Air Force Geophysics Laboratory Technical Report No. AFGL-TR-80-0030, ADA 086863

    [37]

    Horne J D 2004 M. S. Thesis (Monterey, CA: Naval Postgraduate School) p163

    [38]

    Hodur R M 1997 Mon. Weather Rev. 125 1414Google Scholar

    [39]

    Dewan E M, Good R E, Beland B, Brown J 1993 Environmental Research Paper (Phillips Laboratory, Hansom Air Force Base) No. 1121 PL-TR-93-2043, ADA 279399

    [40]

    Ruggiero F H, DeBenedictis D A 2002 HPCMP Users Group Conference Austin, Texas, January 13–14, 2002 p11

    [41]

    Coulman C, Vernin J, Coqueugniot Y, Caccia J 1988 Appl. Opt. 27 155Google Scholar

    [42]

    Basu S 2015 Opt. Lett. 40 4130Google Scholar

    [43]

    胡晓丹, 吴晓庆, 青春 2019 极地研究 31 301

    Hu X D, Wu X Q, Qing C 2019 Chin. J. Polar Res. 31 301

    [44]

    胡晓丹, 苏昶东, 罗涛, 青春, 孙刚, 刘庆, 李学彬, 朱文越, 吴晓庆 2019 强激光与粒子束 31 081002Google Scholar

    Hu X D, Su C D, Luo T, Qing C, Sun G, Liu Q, Li X B, Zhu W Y, Wu X Q 2019 High Power Laser Part. Beams 31 081002Google Scholar

    [45]

    Wu S, Su C D, Wu X Q, Luo T, Li X B 2020 Publ. Astron. Soc. Pac. 132 084501Google Scholar

    [46]

    Wu S, Wu X Q, Su C D, YangQ K, Xu J Y, Luo T, Huang C, Qing C 2021 Opt. Express 29 12455

    [47]

    青春, 吴晓庆, 李学彬, 黄宏华, 蔡俊 2015 强激光与粒子束 27 061009Google Scholar

    Qing C, Wu X Q, Li X B, Huang H H, Cai J 2015 High Power Laser Part. Beams 27 061009Google Scholar

    [48]

    青春, 吴晓庆, 李学彬, 朱文越, 饶瑞中, 梅海平 2015 中国激光 42 0913001Google Scholar

    Qing C, Wu X Q, Li X B, Zhu W Y, Rao R Z, Mei H P 2015 Chin. J. Lasers 42 0913001Google Scholar

    [49]

    青春, 吴晓庆, 李学彬, 朱文越, 黄印博, 饶瑞中, 蔡俊 2016 光学学报 36 0501001Google Scholar

    Qing C, Wu X Q, Li X B, Zhu W Y, Huang Y B, Rao R Z, Cai J 2016 Acta Opt. Sin. 36 0501001Google Scholar

    [50]

    Su C D, Wu X Q, Wu S, Yang Q K, Han Y J, Qing C, Luo T, Liu Y 2021 Mon. Not. R. Astron. Soc. 506 3430Google Scholar

    [51]

    Travouillon T, Ashley M C B, Burton M G, Storey J W V, Loewenstein R F 2003 Astron. Astrophys. 400 1163Google Scholar

    [52]

    Lawrence J S, Ashley M C B, Tokovinin A, Travouillon T 2004 Nature 431 278Google Scholar

    [53]

    Agabi A, Aristidi E, Azouit M, Fossat E, Martin F, Sadibekova T, Vernin J, Ziad A 2006 PASP 118 344Google Scholar

    [54]

    Aristidi E, Fossat E, Agabi A, Mékarnia D, Jeanneaux F, Bondoux E, Challita Z, Ziad A, Vernin J, Trinquet H 2009 Astron. Astrophys. 499 955Google Scholar

    [55]

    Ma B, Shang Z H, Hu Y, Hu K L, Jiang P 2020 Nature 583 771Google Scholar

    [56]

    Wu X Q, Tian Q G, Jiang P, Chai B, Qing C, Cai J, Jin X M, Zhou H Y 2015 Adv. Polar Sci. 26 305

    [57]

    Qing C, Wu X Q, Huang H H, Tian Q G, Zhu W Y, Rao R Z, Li X B 2016 Opt. Express 24 20424Google Scholar

    [58]

    Qing C, Li X B, Wu X Q, TianQ G, Liu D, Rao R Z, Zhu W Y 2018 Astron. J. 155 13

    [59]

    Yang Q K, Wu X Q, Han Y J, Qing C 2021 Appl. Opt. 60 4084Google Scholar

    [60]

    Yang Q K, Wu X Q, Wu S, Han Y J, Su C D, Zhang S T, Qing C 2021 J. Opt. Soc. Am. 38 1483Google Scholar

    [61]

    Yang Q K, Wu X Q, Han Y J, Qing C, Wu S, Su C D, Wu P F, Luo T, Zhang S T 2021 Opt. Express 29 44000Google Scholar

    [62]

    Yang Q K, Wu X Q, Han Y J, Qing C, Wu S, Su C D, Wu P F, Zhang S T 2021 Opt. Express 29 35238Google Scholar

  • 图 1  不同大气稳定度下模式估算不确定度

    Figure 1.  The uncertainty of $ C_n^2 $ estimated by model under different stability parameter.

    图 2  一维边界层模式估算的合肥地区近地面层$ C_n^2 $随季节的日变化

    Figure 2.  Seasonal and diurnal variation of $ C_n^2 $ at surface layer in Hefei area estimated by one-dimensional boundary layer model.

    图 3  中尺度气象模式预报$ C_n^2 $流程图

    Figure 3.  Flow chart of Forecasting $ C_n^2 $ With mesoscale numerical model.

    图 4  AGA-BP 神经网络结构

    Figure 4.  AGA-BP neural network architecture.

    图 5  三种方法$ C_n^2 $估算值与实测值的比对结果

    Figure 5.  Comparison results of estimated and measured $ C_n^2 $ of three methods.

    图 6  SA-BP 神经网络的结构图

    Figure 6.  SA-BP neural network architecture.

    图 7  SA-BP 神经网络算法流程图

    Figure 7.  Block diagram of the SA-BP neural network.

    图 8  Polar WRF模拟的2014年1月30日(UTC)南极高原2 m高度处$C_n^2$的日变化. 等高线表示地形高度(m), 太阳图标引出的红色箭头表示太阳光照射方向, 黑色五角星表示泰山站位置, 灰色同心圆表示间隔为5°的纬度

    Figure 8.  Polar WRF simulated diurnal evolution of $C_n^2$ at 2 m above model surface of Antarctic Plateau on 30 January, 2014 (UTC), represented by colors.The contours represent the terrain height(m). There are red arrows drawn with a tail at the center of the Sun symbol; the direction of each arrow indicates the direction of sunlight. The black stars show the location of the Taishan Station. The interval of the gray concentric circles representing the latitudes is 5°.

    图 9  南极昆仑站整层视宁度估算与实测比较(实测视宁度数据来自文献[55]) (图9(b)是平均风速廓线, (d)是平均气温廓线, (f)是视宁度的统计分布)

    Figure 9.  Comparison of seeing estimated and measured of whole layer at Kunlun station, Antarctica (The seeing data measured from literature [55]).

    表 1  三种$ C_n^2 $估算方法的比对结果

    Table 1.  Comparison results of$ C_n^2 $ by three estimation methods.

    GradientAGA-BPPolar WRF
    RMSE0.410.290.40
    ${R_{xy}}$0.610.900.67
    DownLoad: CSV

    表 2  6条实测$C_n^2$廓线与SA-BP预测和HMNSP99估算的$C_n^2$廓线定量比对(RMSE/$ {R_{xy}} $)

    Table 2.  Quantitative comparison of 6 measured $ C_n^2 $ profiles with prediction by SA-BP and by HMNSP99 (RMSE/$ {R_{xy}} $).

    气球编号探空日期探空时间HMNSP99 (RMSE/$ {R_{xy}} $)SA-BP (RMSE/$ {R_{xy}} $)
    113/08/202020:031.30/0.650.49/0.72
    214/08/202020:111.24/0.610.67/0.72
    315/08/202020:051.34/0.430.75/0.77
    420/08/202007:250.76/0.470.46/0.71
    521/08/202007:170.74/0.760.43/0.80
    622/08/202007:100.76/0.500.36/0.83
    DownLoad: CSV
    Baidu
  • [1]

    Beland R 1993 The Infrared and ElectroOpticalSystems Handbook, SPIE (Bellingham, WA: Optical Engineering Press) p211

    [2]

    吴晓庆, 马成胜, 曾宗泳 1996 量子电子学 13 385

    Wu X Q, Ma C S, Zeng Z Y 1996 Chin. J. Quantum Electron. 13 385

    [3]

    吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭 2023 72 069201Google Scholar

    Wu X Q, Yang Q K, Huang H H, Qing C, Hu X D, Wang Y J 2023 Acta Phys. Sin. 72 069201Google Scholar

    [4]

    张兆顺, 崔桂香, 许春晓 2002 力学与实践 24 1Google Scholar

    Zhang Z S, Cui G X, Xu C X 2002 Mech. Eng. 24 1Google Scholar

    [5]

    吴晓庆 2017 激光与光电子学进展 54 010001Google Scholar

    Wu X Q 2017 Laser Optoelectron. Prog. 54 010001Google Scholar

    [6]

    Coulman C E, Andre J C, Lacarrere P, Guillingham P R 1986 Publ. Astron. Soc. Pac. 98 376Google Scholar

    [7]

    Masciadri E, Vernin J, Bougeault P 1999 Astron. Astrophys. Suppl. Ser. 137 185Google Scholar

    [8]

    Lascaux F, Masciadri E, Hagelin S 2010 Mon. Not. R. Astron. Soc. 403 1714Google Scholar

    [9]

    Wyngaard J C, Izumi Y, Collins S A 1971 J. Opt. Soc. Am. 61 1646Google Scholar

    [10]

    AndreasE L 1988 J. Opt. Soc. Am. 5 481Google Scholar

    [11]

    Davidson K L, Schacher G E, Fairall C W, Goroch A K 1981 Appl. Opt. 20 2919Google Scholar

    [12]

    Rachele H, Tunick A 1992 Proceedings, Battlefield Atmospherics Conference, White Sands Missile Range New Mexico, SPIE 1688 251

    [13]

    Tunick A D 1998 U. S. Army Research Laboratory, ARL-TR-1615

    [14]

    Hill R J 1980 J. Opt. Soc. Am. 70 1192Google Scholar

    [15]

    Wyngaard J C 1973 On Surface Layer Turbulence, in Workshop of Micrometeorology (Boston: American Meteorological Society) pp101–149

    [16]

    Kaimal J C, Wyngaard J C, Haugen D A, Cote O R, Izumi Y 1976 J. Atmos. Sci. 33 2152Google Scholar

    [17]

    Walters D L, Kunkel K E 1981 J. Opt. Soc. Am. 71 397Google Scholar

    [18]

    Kukharets V P, Tsvang L R 1980 Izv. Atmos. Oceanic Phys. 16 73

    [19]

    Murphy E A, Dewan E M, Sheldon S M 1985 in Adaptive Optics, Proc. SPIE 551 156

    [20]

    Andrews L C, Phillips R L, Crabbs R, Wayne D, Leclerc T, Sauer P 2010 Proc. SPIE 7588 758809Google Scholar

    [21]

    Andrews L C, Phillips R L, Crabbs R, Wayne D, Leclerc T, Sauer P 2012 Proc. SPIE 8238 82380FGoogle Scholar

    [22]

    吴晓庆, 朱行听, 黄宏华, 胡顺星 2012 光学学报 32 0701004Google Scholar

    Wu X Q, Zhu X T, Huang H H, Hu S X 2012 Acta Opt. Sin. 32 0701004Google Scholar

    [23]

    吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩 2017 66 039201Google Scholar

    Wu X Q, Tian Q G, Jin X M, Jiang P, Qing C, Cai J, Zhou H Y 2017 Acta Phys. Sin. 66 039201Google Scholar

    [24]

    吴晓庆, 王英俭, 曾宗泳, 马成胜, 袁仁民 2002 气象学报 60 1Google Scholar

    Wu X Q, Wang Y J, Zeng Z Y, Ma C S, Yuan R M 2002 Acta Meteorol. Sin. 60 1Google Scholar

    [25]

    Burk S D 1980 J. Appl. Meteor. 19 562Google Scholar

    [26]

    吴晓庆, 王英俭, 曾宗泳, 龚知本 2002 强激光与粒子束 14 819

    Wu X Q, Wang Y J, Zeng Z Y, Gong Z 2002 High Power Laser Part. Beams 14 819

    [27]

    Cheinet S, Beljaars A 2011 Boundary-Layer Meteorol 138 453Google Scholar

    [28]

    许利明 2008 硕士论文 (合肥: 中国科学院大学)

    Xu L M 2008 M. S. Thesis (Hefei: University of Chinese Academy of Sciences) (in Chinese)

    [29]

    Qing C, Wu X Q, Li X B, Zhu W Y, Qiao C H, Rao R Z, Mei H P 2016 Opt. Express 24 13303Google Scholar

    [30]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [31]

    Wang Y, Basu S 2016 Opt. Lett. 41 2334Google Scholar

    [32]

    Su C D, Wu X Q, Luo T, Wu S, Qing C 2020 Appl. Opt. 59 3699Google Scholar

    [33]

    吴晓庆 2019 安徽师范大学学报自然科学版 (特约稿) 42 511

    Wu X Q 2019 J. Anhui Normal Univ. (Nat. Sci.) 42 511

    [34]

    吴晓庆 2014 安徽师范大学学报(自然科学版) (特约稿) 37 511

    Wu X Q 2014 J. Anhui Normal Univ. (Nat. Sci.) 37 511

    [35]

    Corrsin S 1951 J. Appl. Phys. 22 469Google Scholar

    [36]

    Dewan E M 1980 Optical Turbulence Forecasting: A turorial Air Force Geophysics Laboratory Technical Report No. AFGL-TR-80-0030, ADA 086863

    [37]

    Horne J D 2004 M. S. Thesis (Monterey, CA: Naval Postgraduate School) p163

    [38]

    Hodur R M 1997 Mon. Weather Rev. 125 1414Google Scholar

    [39]

    Dewan E M, Good R E, Beland B, Brown J 1993 Environmental Research Paper (Phillips Laboratory, Hansom Air Force Base) No. 1121 PL-TR-93-2043, ADA 279399

    [40]

    Ruggiero F H, DeBenedictis D A 2002 HPCMP Users Group Conference Austin, Texas, January 13–14, 2002 p11

    [41]

    Coulman C, Vernin J, Coqueugniot Y, Caccia J 1988 Appl. Opt. 27 155Google Scholar

    [42]

    Basu S 2015 Opt. Lett. 40 4130Google Scholar

    [43]

    胡晓丹, 吴晓庆, 青春 2019 极地研究 31 301

    Hu X D, Wu X Q, Qing C 2019 Chin. J. Polar Res. 31 301

    [44]

    胡晓丹, 苏昶东, 罗涛, 青春, 孙刚, 刘庆, 李学彬, 朱文越, 吴晓庆 2019 强激光与粒子束 31 081002Google Scholar

    Hu X D, Su C D, Luo T, Qing C, Sun G, Liu Q, Li X B, Zhu W Y, Wu X Q 2019 High Power Laser Part. Beams 31 081002Google Scholar

    [45]

    Wu S, Su C D, Wu X Q, Luo T, Li X B 2020 Publ. Astron. Soc. Pac. 132 084501Google Scholar

    [46]

    Wu S, Wu X Q, Su C D, YangQ K, Xu J Y, Luo T, Huang C, Qing C 2021 Opt. Express 29 12455

    [47]

    青春, 吴晓庆, 李学彬, 黄宏华, 蔡俊 2015 强激光与粒子束 27 061009Google Scholar

    Qing C, Wu X Q, Li X B, Huang H H, Cai J 2015 High Power Laser Part. Beams 27 061009Google Scholar

    [48]

    青春, 吴晓庆, 李学彬, 朱文越, 饶瑞中, 梅海平 2015 中国激光 42 0913001Google Scholar

    Qing C, Wu X Q, Li X B, Zhu W Y, Rao R Z, Mei H P 2015 Chin. J. Lasers 42 0913001Google Scholar

    [49]

    青春, 吴晓庆, 李学彬, 朱文越, 黄印博, 饶瑞中, 蔡俊 2016 光学学报 36 0501001Google Scholar

    Qing C, Wu X Q, Li X B, Zhu W Y, Huang Y B, Rao R Z, Cai J 2016 Acta Opt. Sin. 36 0501001Google Scholar

    [50]

    Su C D, Wu X Q, Wu S, Yang Q K, Han Y J, Qing C, Luo T, Liu Y 2021 Mon. Not. R. Astron. Soc. 506 3430Google Scholar

    [51]

    Travouillon T, Ashley M C B, Burton M G, Storey J W V, Loewenstein R F 2003 Astron. Astrophys. 400 1163Google Scholar

    [52]

    Lawrence J S, Ashley M C B, Tokovinin A, Travouillon T 2004 Nature 431 278Google Scholar

    [53]

    Agabi A, Aristidi E, Azouit M, Fossat E, Martin F, Sadibekova T, Vernin J, Ziad A 2006 PASP 118 344Google Scholar

    [54]

    Aristidi E, Fossat E, Agabi A, Mékarnia D, Jeanneaux F, Bondoux E, Challita Z, Ziad A, Vernin J, Trinquet H 2009 Astron. Astrophys. 499 955Google Scholar

    [55]

    Ma B, Shang Z H, Hu Y, Hu K L, Jiang P 2020 Nature 583 771Google Scholar

    [56]

    Wu X Q, Tian Q G, Jiang P, Chai B, Qing C, Cai J, Jin X M, Zhou H Y 2015 Adv. Polar Sci. 26 305

    [57]

    Qing C, Wu X Q, Huang H H, Tian Q G, Zhu W Y, Rao R Z, Li X B 2016 Opt. Express 24 20424Google Scholar

    [58]

    Qing C, Li X B, Wu X Q, TianQ G, Liu D, Rao R Z, Zhu W Y 2018 Astron. J. 155 13

    [59]

    Yang Q K, Wu X Q, Han Y J, Qing C 2021 Appl. Opt. 60 4084Google Scholar

    [60]

    Yang Q K, Wu X Q, Wu S, Han Y J, Su C D, Zhang S T, Qing C 2021 J. Opt. Soc. Am. 38 1483Google Scholar

    [61]

    Yang Q K, Wu X Q, Han Y J, Qing C, Wu S, Su C D, Wu P F, Luo T, Zhang S T 2021 Opt. Express 29 44000Google Scholar

    [62]

    Yang Q K, Wu X Q, Han Y J, Qing C, Wu S, Su C D, Wu P F, Zhang S T 2021 Opt. Express 29 35238Google Scholar

  • [1] Wu Xiao-Qing, Yang Qi-Ke, Huang Hong-Hua, Qing Chun, Hu Xiao-Dan, Wang Ying-Jian. Study of ${\boldsymbol C_{\boldsymbol n}^{\boldsymbol 2}}$ profile model by atmospheric optical turbulence model. Acta Physica Sinica, 2023, 72(6): 069201. doi: 10.7498/aps.72.20221985
    [2] Abdikirim Azizigul, Tao Zhi-Wei, Liu Shi-Wei, Li Yan-Ling, Rao Rui-Zhong, Ren Yi-Chong. Influence of atmospheric turbulence on temporal coherence characteristics of received optical field. Acta Physica Sinica, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [3] Xu Qi-Wei, Wang Pei-Pei, Zeng Zhen-Jia, Huang Ze-Bin, Zhou Xin-Xing, Liu Jun-Min, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Extracting atmospheric turbulence phase using deep convolutional neural network. Acta Physica Sinica, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [4] Cai Jun, Li Xue-Bin, Zhan Guo-Wei, Wu Peng-Fei, Xu Chun-Yan, Qing Chun, Wu Xiao-Qing. A new model for the profiles of optical turbulence outer scale and Cn2 on the coast. Acta Physica Sinica, 2018, 67(1): 014206. doi: 10.7498/aps.67.20171324
    [5] Wu Xiao-Qing, Tian Qi-Guo, Jin Xin-Miao, Jiang Peng, Qing Chun, Cai Jun, Zhou Hong-Yan. Estimating optical turbulence of atmospheric surface layer at Antarctic Taishan station from meteorological data. Acta Physica Sinica, 2017, 66(3): 039201. doi: 10.7498/aps.66.039201
    [6] Mao Tian-Yi, Chen Qian, He Wei-Ji, Zhuang Jia-Yan, Zou Yun-Hao, Dai Hui-Dong, Gu Guo-Hua. Optical communication in turbid and turbulent atmosphere. Acta Physica Sinica, 2016, 65(8): 084207. doi: 10.7498/aps.65.084207
    [7] Wang Qian, Mei Hai-Ping, Li Yu-Jian, Shao Shi-Yong, Li Xue-Bin, Rao Rui-Zhong. Experimental investigation of open sea atmospheric optical turbulence. Acta Physica Sinica, 2016, 65(7): 074206. doi: 10.7498/aps.65.074206
    [8] Wang Qian, Mei Hai-Ping, Qian Xian-Mei, Rao Rui-Zhong. Experimental investigation of the outer scale in atmospheric optical turbulence near the ground. Acta Physica Sinica, 2015, 64(22): 224216. doi: 10.7498/aps.64.224216
    [9] Wang Qian, Mei Hai-Ping, Qian Xian-Mei, Rao Rui-Zhong. Spatial correlation experimental analysis of atmospheric optical turbulence in the near ground layer. Acta Physica Sinica, 2015, 64(11): 114212. doi: 10.7498/aps.64.114212
    [10] Ma Yuan, Ji Xiao-Ling. Average intensity of tilted and off-axis Gaussian Schell-model beams propagating through a cat-eye optical lens in atmospheric turbulence. Acta Physica Sinica, 2013, 62(9): 094214. doi: 10.7498/aps.62.094214
    [11] Li Xiao-Qing, Ji Xiao-Ling, Zhu Jian-Hua. Higher-order intensity moments of optical beams in atmospheric turbulence. Acta Physica Sinica, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [12] Zhang Lan-Qiang, Gu Nai-Ting, Rao Chang-Hui. Analysis of modal tomography for three-dimensional wavefront sensing of atmosphere turbulence. Acta Physica Sinica, 2013, 62(16): 169501. doi: 10.7498/aps.62.169501
    [13] Pan Ping-Ping, Zhang Bin. Method for determining the characteristic parameters of the turbulence based on the measurement of M2-factor. Acta Physica Sinica, 2011, 60(1): 014215. doi: 10.7498/aps.60.014215
    [14] Chen Xiao-Wen, Tang Ming-Yue, Ji Xiao-Ling. The influence of atmospheric turbulence on the spatial correlation property of partially coherent Hermite-Gaussian beams. Acta Physica Sinica, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [15] Wei Hong-Yan, Wu Zhen-Sen, Peng Hui. Scattering from a diffuse target in the slant atmospheric turbulence. Acta Physica Sinica, 2008, 57(10): 6666-6672. doi: 10.7498/aps.57.6666
    [16] Ji Xiao-Ling, Tang Ming-Yue, Zhang Tao. Spectral shift and spectral transition of ultrashort pulsed Hermite-Gaussian beams in the turbulent atmosphere. Acta Physica Sinica, 2007, 56(7): 4281-4288. doi: 10.7498/aps.56.4281
    [17] Ji Xiao-Ling, Huang Tai-Xing, Lü Bai-Da. Spreading of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere. Acta Physica Sinica, 2006, 55(2): 978-982. doi: 10.7498/aps.55.978
    [18] Ji Xiao-Ling, Tang Ming-Yue. Propagation properties of one-dimensional off-axis Gaussian beams through the turbulent atmosphere. Acta Physica Sinica, 2006, 55(9): 4968-4973. doi: 10.7498/aps.55.4968
    [19] Chen Jing-Yuan, Chen Shi-Gang, Wang Guang-Rui. Near Gaussian approximation for light propagation in the intermittent atmospheric turbulence. Acta Physica Sinica, 2005, 54(7): 3123-3131. doi: 10.7498/aps.54.3123
    [20] WANG XIAO-CHUN, ZHOU DING-WEN, ZHANG YI-MO. REAL-TIME COMPENSATION OF ATMOSPHERIC TURBULEN- CE BY NONLINEAR OPTICAL PHASE CONJUAGTION. Acta Physica Sinica, 1989, 38(3): 466-470. doi: 10.7498/aps.38.466
Metrics
  • Abstract views:  6518
  • PDF Downloads:  171
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2022
  • Accepted Date:  25 November 2022
  • Available Online:  09 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回
Baidu
map