搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌与湍流大气中的光通信

冒添逸 陈钱 何伟基 庄佳衍 邹云浩 戴慧东 顾国华

引用本文:
Citation:

混沌与湍流大气中的光通信

冒添逸, 陈钱, 何伟基, 庄佳衍, 邹云浩, 戴慧东, 顾国华

Optical communication in turbid and turbulent atmosphere

Mao Tian-Yi, Chen Qian, He Wei-Ji, Zhuang Jia-Yan, Zou Yun-Hao, Dai Hui-Dong, Gu Guo-Hua
PDF
导出引用
  • 目前, 光无线通信的质量主要受到大气信道环境的制约, 大气信道中混沌介质与湍流的强烈扰动使得通信质量很差, 甚至通信中断. 提出了一种面到点的光无线通信机理: 利用面阵各单元的光信号在混沌介质中传输通道的空间非相干性, 通过桶探测器收集通过混沌介质的光信号的能量和, 平均各传输通道的交叉干扰, 降低混沌介质对光无线通信的影响; 利用随机噪声与随机编码的空间非相干性, 经过二阶相关运算, 构建新的信号传输方程, 减弱大气湍流及背景光对信号解码的干扰, 使得接收端并不需要窄带光学滤波器. 数值仿真和演示实验表明, 该光无线通信机理在混沌与湍流大气中的误码率为10-4-10-2, 能够实现复杂大气环境中的光通信, 在军事、抢险救援等方面具有重要应用价值.
    Free space optical-communication (FSO) has gained significant importance due to its unique features: large bandwidth, license free spectrum, high data rate, easy and quick deployability, less power and low mass requirement. However, the performance of FSO is degraded in the turbid and turbulent atmosphere, dramatically. Various techniques are proposed to cope with the turbid media and turbulence in atmosphere, e. g. aperture averaging, diversity, adaptive optics, modulation and coding and orbital angular momentum. However, in the above systems with point-to-point optical communication structure, there exist obvious drawbacks or they are complex and expensive, and thus difficult to use in practice. In this article, array-to-point optical communication (APOC) with good performance in turbid and turbulent atmosphere is demonstrated. The strongly disturbed communication channel can be expressed as a circular complex Gaussian transmission matrix, and the transmitted field is described as a linear combination of the fields coming from different and independent segments of the digital micro-mirror device (DMD), so that the cross terms are averaged on the surface of bucket detector. Instead, the contributions of all segments for each light field nearly becomes equally weighted. Turbulence and other noises are reduced for the incoherence with sampling matrix based on the second-order correlation which has widely been used in ghost imaging and LIDAR. Consequently, narrow-band optical filter is not required at the receiver. The decoding algorithm is a new signal processing strategy from information technology, compressed sensing, which discards low frequency components in sampling process and recovers the signal by conducting convex optimization. Numerical simulations and experiments with binary and multi-bits level signals are demonstrated to show that the bit error rate of the proposed method APOC is approximately 10-4-10-2, which is feasible for the optical communication in such complex communication channels. The communication rate, limited by the frequency of the DMD and the sampling rate of the receiver, could reach hundreds of kbit/s, and with improved technology a rate of Mbit/s should be attainable. This proposed APOC could realize optical communication in turbid and turbulent atmosphere and thus offers a very effective approach to promoting the implementation in military and rescue.
      通信作者: 陈钱, chenqian@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61271332, 61101196)资助的课题.
      Corresponding author: Chen Qian, chenqian@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271332, 61101196).
    [1]

    Ying C L, Lu H H, Li C Y, Cheng C J, Peng P C, Ho W J 2015 Opt. Lett. 40 3276

    [2]

    Chan V W 2006 J. Lightwave Technol. 24 4750

    [3]

    Henniger H, Wilfert O 2010 Radioengineering 19 203

    [4]

    Mo Q Y, Zhao Y L 2015 Acta Phys. Sin. 60 072902 (in Chinese) [莫秋燕, 赵彦立 2011 60 072902]

    [5]

    Andrews L C 1992 JOSA A 9 597

    [6]

    Zocchi F E 2005 Opt. Commun. 248 395

    [7]

    Tyson R 2010 Principles of Adaptive Optics (Boca Raton, London, New York: CRC Press)

    [8]

    Chatzidiamantis N D, Karagiannidis G K, Uysal M 2010 Commun. IEEE Trans. on. 58 3381

    [9]

    Alzubi J A, Alzubi O A, Chen T M 2014 Forward Error Correction Based On Algebraic-Geometric Theory (New York: Springer)

    [10]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [11]

    Mosk A P, Lagendijk A, Lerosey G, Fink M 2012 Nature Photon 6 283

    [12]

    Aulbach J, Gjonaj B, Johnson P M, Mosk A P, Lagendijk A 2011 Phys. Rev. Lett. 106 103901

    [13]

    Mccabe D J, Tajalli A, Austin D R, Bondareff P, Walmsley I A, Gigan S, Chatel B 2011 Nat. Commun. 2 447

    [14]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)

    [15]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 62 174212]

    [16]

    Li G M, L S X 2015 Acta Phys. Sin. 64 160502 (in Chinese) [李广明, 吕善翔 2015 64 160502]

    [17]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [18]

    Shapiro J H 2008 Phys. Rev. A 78 61802

    [19]

    Gong W 2015 Photon. Res. 3 234

    [20]

    Zhang C, Guo S, Cao J, Guan J, Gao F 2014 Opt. Express 22 30063

    [21]

    Li C, Yin W, Zhang Y 2009 CAAM Report

    [22]

    Dudley D, Duncan W M, Slaughter J 2003 Conference on MOEMS Display and Imaging Systems San Jose, USA, January 28-29, 2003 pp14-25

  • [1]

    Ying C L, Lu H H, Li C Y, Cheng C J, Peng P C, Ho W J 2015 Opt. Lett. 40 3276

    [2]

    Chan V W 2006 J. Lightwave Technol. 24 4750

    [3]

    Henniger H, Wilfert O 2010 Radioengineering 19 203

    [4]

    Mo Q Y, Zhao Y L 2015 Acta Phys. Sin. 60 072902 (in Chinese) [莫秋燕, 赵彦立 2011 60 072902]

    [5]

    Andrews L C 1992 JOSA A 9 597

    [6]

    Zocchi F E 2005 Opt. Commun. 248 395

    [7]

    Tyson R 2010 Principles of Adaptive Optics (Boca Raton, London, New York: CRC Press)

    [8]

    Chatzidiamantis N D, Karagiannidis G K, Uysal M 2010 Commun. IEEE Trans. on. 58 3381

    [9]

    Alzubi J A, Alzubi O A, Chen T M 2014 Forward Error Correction Based On Algebraic-Geometric Theory (New York: Springer)

    [10]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [11]

    Mosk A P, Lagendijk A, Lerosey G, Fink M 2012 Nature Photon 6 283

    [12]

    Aulbach J, Gjonaj B, Johnson P M, Mosk A P, Lagendijk A 2011 Phys. Rev. Lett. 106 103901

    [13]

    Mccabe D J, Tajalli A, Austin D R, Bondareff P, Walmsley I A, Gigan S, Chatel B 2011 Nat. Commun. 2 447

    [14]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)

    [15]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 62 174212]

    [16]

    Li G M, L S X 2015 Acta Phys. Sin. 64 160502 (in Chinese) [李广明, 吕善翔 2015 64 160502]

    [17]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [18]

    Shapiro J H 2008 Phys. Rev. A 78 61802

    [19]

    Gong W 2015 Photon. Res. 3 234

    [20]

    Zhang C, Guo S, Cao J, Guan J, Gao F 2014 Opt. Express 22 30063

    [21]

    Li C, Yin W, Zhang Y 2009 CAAM Report

    [22]

    Dudley D, Duncan W M, Slaughter J 2003 Conference on MOEMS Display and Imaging Systems San Jose, USA, January 28-29, 2003 pp14-25

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 干红平, 张涛, 花燚, 舒君, 何立军. 基于双极性混沌序列的托普利兹块状感知矩阵.  , 2021, 70(3): 038402. doi: 10.7498/aps.70.20201475
    [3] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法.  , 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [4] 石航, 王丽丹. 一种基于压缩感知和多维混沌系统的多过程图像加密方案.  , 2019, 68(20): 200501. doi: 10.7498/aps.68.20190553
    [5] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法.  , 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [6] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法.  , 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [7] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [8] 柴水荣, 郭立新. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究.  , 2015, 64(6): 060301. doi: 10.7498/aps.64.060301
    [9] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [10] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构.  , 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [11] 韩笑纯, 黄靖正, 方晨, 曾贵华. 群速度色散对于纠缠光场二阶关联函数影响的研究.  , 2015, 64(7): 070301. doi: 10.7498/aps.64.070301
    [12] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法.  , 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [13] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析.  , 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [14] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法.  , 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [15] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [16] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [17] 郭静波, 汪韧. 基于混沌序列和RIPless理论的循环压缩测量矩阵的构造.  , 2014, 63(19): 198402. doi: 10.7498/aps.63.198402
    [18] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [19] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [20] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究.  , 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
计量
  • 文章访问数:  7042
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-04
  • 修回日期:  2015-12-28
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map