搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近地面大气光学湍流空间相关特性的实验研究

王倩 梅海平 钱仙妹 饶瑞中

引用本文:
Citation:

近地面大气光学湍流空间相关特性的实验研究

王倩, 梅海平, 钱仙妹, 饶瑞中

Spatial correlation experimental analysis of atmospheric optical turbulence in the near ground layer

Wang Qian, Mei Hai-Ping, Qian Xian-Mei, Rao Rui-Zhong
PDF
导出引用
  • 本文提出了基于光纤湍流传感器阵列的大气光学湍流空间相关函数测量原理, 并确定了具体的测量方案和数据统计方法. 利用光纤湍流传感器阵列在近地面开展了大气光学湍流空间相关特性的实验测量研究, 尽可能全面地展示光学湍流空间相关函数的各种形式. 结果表明, 大气光学湍流的一维空间相关函数主要表现为两种结构形态, 其一, 58.7%基本符合各向同性湍流空间相关函数模型, 其相关函数在一定尺度范围内呈现随尺度的增大而减小的趋势, 当超过该尺度时, 相关系数接近于0; 其二, 另有37.9%表现为与尺度无关, 相关系数维持在0附近小幅度随机振荡. 不难发现:光学湍流的空间相关特性主要取决于湍流的强弱和湍流是否得以充分发展, 同时, 湍流的相干结构将引起空间相关函数的小幅度振荡. 以空间布点探测直接获取光学湍流空间相关函数的方法, 不仅为分析湍流空间结构奠定了实验基础, 同时, 也为进一步建立非K湍流模型提供了理论开端.
    Atmospheric optical turbulence means refractive index random fluctuation of atmosphere. In this article, according to the concept of correlation function, the measurement principle, measurement schemes, and data processing method of spatial correlation function are given based on a high-quality fiber optical turbulence sensing array. Determining the statistical time and the calculation principle of the spatial correlation is the main point of current research. Emphasis is put on demonstrating the kinds of structural forms and analyzing the impact elements of spatial correlation function in turbulence as clear as possible. Using the sensing array, experimental measurement is promoted in the near ground layer and many forms of correlation functions are revealed. Results show that there are two main structural forms of the spatial correlation function:the first one shows an isotropy-model form, which tends to decrease with the increase of spatial displacement, and then tends to zero after outer scale, the coincidence rate is about 58.7%. The other one tends to oscillate around zero, and the coincidence rate is about 37.9%. By analyzing the probability and impact elements, it is not difficult to know that the spatial correlation of an optical turbulence mainly depends on the intensity and development degree of the optical turbulence; and the coherent structure is an important factor of oscillation in the correlation functions. On the one hand, the value of correlation coefficient is mainly determined by the intensity of the optical turbulence; and on a certain scale, the stronger the turbulence, the bigger the value of correlation coefficient becomes. On the other hand, the variation tendency of correlation function is not only determined by the intensity of turbulence, but also by the development degree of the optical turbulence. When the atmosphere is in advection or anisotropy, its spatial correlation coefficient will oscillate around zero and be unrelated to the spatial displacement. The spatial correlation function obtained by the sensor array set is not only the foundation of analyzing the spatial structure, but also the beginning of giving non-Kolmogorov model of turbulence.
    • 基金项目: 国家自然科学基金(批准号:41205010,61107066)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41205010, 61107066).
    [1]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) p155-159 (in Chinese) [饶瑞中 2012 现代大气光学(北京:科学出版社)第155-159页]

    [2]

    Cui L Y, Xue B D, Cao X G, Zhou F G 2014 J. Opt. Soc. Am. A 31 829

    [3]

    Reinhardt C N, Tsintikidis D, Hammel S, Kuga Y, Ritcey J A, Ishimaru A 2012 Opt. Eng. 51 031205

    [4]

    Wu X Q, Wang Y J, Zeng Z Y, Gong Z B 2002 High Power Laser and Particle Beams 14233 (in Chinese) [吴晓庆, 王英俭, 曾宗泳, 龚知本 2002 强激光与粒子束 14233]

    [5]

    Wu X Q, Huang Y B, Mei H P, Shao S Y, Huang H H, Qian X M, Cui C L 2014 Acta Opt. Sin. 34 0601001 (in Chinese) [吴晓庆, 黄印博, 梅海平, 邵士勇, 黄宏华, 钱仙妹, 崔朝龙 2014 光学学报 34 0601001]

    [6]

    Guo Y M, Ma X Y, Rao C H 2013 Acta Phys. Sin. 62 13420701 (in Chinese) [郭友明, 马晓燠, 饶长辉 2013 62 13420701]

    [7]

    Cai D M, Wang K, Jia P, Wang D, Liu J X 2014 Acta Phys. Sin. 63 10421701 (in Chinese) [蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞 2014 63 10421701]

    [8]

    Shraiman B I, Siggia E D 2000 Nature 405 639

    [9]

    Jiang N 1999 Mechanics in Engineering 21 75 (in Chinese) [姜楠 1999 力学与实践 21 75]

    [10]

    Mei H P 2007 Ph. D. Dissertation (Hefei:Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [梅海平 2006 博士学位论文(合肥:中国科学院合肥物质科学研究院)]

    [11]

    Xiao S M 2014 Ph. D. Dissertation (Hefei:Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [肖树妹 2014 博士学位论文(合肥:中国科学院合肥物质科学研究院)]

    [12]

    Kolmogorov A N 1991 Proc. R. Soc. Lond. A 434 9

    [13]

    Hao L, Mei H P, Qian X M, Zhu W Y, Rao R Z 2008 Acta Photonica Sin. 37 2292 (in Chinese) [郝磊, 梅海平, 钱仙妹, 朱文越, 饶瑞中 2008 光子学报 37 2292]

    [14]

    Xiao S M, Mei H P, Qian X M, Rao R Z 2011 Acta Opt. Sin. 31 0201002 (in Chinese) [肖树妹, 梅海平, 钱仙妹, 饶瑞中 2011 光学学报 31 0201002]

    [15]

    Lukin V P 2005 Proceedings of SPIE Bellingham, WA, September 21-22, 2005p598101

    [16]

    She Z S, Jackson E, Orszag S A 1990 Nature 344 226

    [17]

    Nosov V V, Grigoriev V M, Kovadlo P G, Lukin V P, Nosov E V, Torgaev A V 2008 Proceedings of SPIE Krasnoyarsk, Russian, June 22, p729609

    [18]

    Simmons L F G, Salter C, Taylor G I 1938 Proc. Roy. Soc. Lond. A 165 73

    [19]

    Karman T V 1937 Physics 23 98

    [20]

    Townsend A A 1947 Math. Proc. Cambridge. 43 560

    [21]

    Renhorn I G E, Svensson T, Boreman G D 2013 Opt. Eng. 52 026001

    [22]

    Kulikov V A, Andreeva M S, Koryabin A V, Shmalhausen V I 2012 Appl. Optics 51 8505

    [23]

    Consortini A, Innocenti C, Paoli G 2002 Opt. Commun. 214 9

    [24]

    Voistsekhovich V V, Cuevas S 1995 J. Opt. Soc. Am. A 12 2523

    [25]

    Osman K T, Horbury T S 2007 Astrophys. J 654 103

    [26]

    Rao C H, Jiang W H, Ling N 2000 Acta Opt. Sin. 20 1323 (in Chinese) [饶长辉, 姜文汉, 凌宁 2000光学学报 20 1323]

  • [1]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) p155-159 (in Chinese) [饶瑞中 2012 现代大气光学(北京:科学出版社)第155-159页]

    [2]

    Cui L Y, Xue B D, Cao X G, Zhou F G 2014 J. Opt. Soc. Am. A 31 829

    [3]

    Reinhardt C N, Tsintikidis D, Hammel S, Kuga Y, Ritcey J A, Ishimaru A 2012 Opt. Eng. 51 031205

    [4]

    Wu X Q, Wang Y J, Zeng Z Y, Gong Z B 2002 High Power Laser and Particle Beams 14233 (in Chinese) [吴晓庆, 王英俭, 曾宗泳, 龚知本 2002 强激光与粒子束 14233]

    [5]

    Wu X Q, Huang Y B, Mei H P, Shao S Y, Huang H H, Qian X M, Cui C L 2014 Acta Opt. Sin. 34 0601001 (in Chinese) [吴晓庆, 黄印博, 梅海平, 邵士勇, 黄宏华, 钱仙妹, 崔朝龙 2014 光学学报 34 0601001]

    [6]

    Guo Y M, Ma X Y, Rao C H 2013 Acta Phys. Sin. 62 13420701 (in Chinese) [郭友明, 马晓燠, 饶长辉 2013 62 13420701]

    [7]

    Cai D M, Wang K, Jia P, Wang D, Liu J X 2014 Acta Phys. Sin. 63 10421701 (in Chinese) [蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞 2014 63 10421701]

    [8]

    Shraiman B I, Siggia E D 2000 Nature 405 639

    [9]

    Jiang N 1999 Mechanics in Engineering 21 75 (in Chinese) [姜楠 1999 力学与实践 21 75]

    [10]

    Mei H P 2007 Ph. D. Dissertation (Hefei:Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [梅海平 2006 博士学位论文(合肥:中国科学院合肥物质科学研究院)]

    [11]

    Xiao S M 2014 Ph. D. Dissertation (Hefei:Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [肖树妹 2014 博士学位论文(合肥:中国科学院合肥物质科学研究院)]

    [12]

    Kolmogorov A N 1991 Proc. R. Soc. Lond. A 434 9

    [13]

    Hao L, Mei H P, Qian X M, Zhu W Y, Rao R Z 2008 Acta Photonica Sin. 37 2292 (in Chinese) [郝磊, 梅海平, 钱仙妹, 朱文越, 饶瑞中 2008 光子学报 37 2292]

    [14]

    Xiao S M, Mei H P, Qian X M, Rao R Z 2011 Acta Opt. Sin. 31 0201002 (in Chinese) [肖树妹, 梅海平, 钱仙妹, 饶瑞中 2011 光学学报 31 0201002]

    [15]

    Lukin V P 2005 Proceedings of SPIE Bellingham, WA, September 21-22, 2005p598101

    [16]

    She Z S, Jackson E, Orszag S A 1990 Nature 344 226

    [17]

    Nosov V V, Grigoriev V M, Kovadlo P G, Lukin V P, Nosov E V, Torgaev A V 2008 Proceedings of SPIE Krasnoyarsk, Russian, June 22, p729609

    [18]

    Simmons L F G, Salter C, Taylor G I 1938 Proc. Roy. Soc. Lond. A 165 73

    [19]

    Karman T V 1937 Physics 23 98

    [20]

    Townsend A A 1947 Math. Proc. Cambridge. 43 560

    [21]

    Renhorn I G E, Svensson T, Boreman G D 2013 Opt. Eng. 52 026001

    [22]

    Kulikov V A, Andreeva M S, Koryabin A V, Shmalhausen V I 2012 Appl. Optics 51 8505

    [23]

    Consortini A, Innocenti C, Paoli G 2002 Opt. Commun. 214 9

    [24]

    Voistsekhovich V V, Cuevas S 1995 J. Opt. Soc. Am. A 12 2523

    [25]

    Osman K T, Horbury T S 2007 Astrophys. J 654 103

    [26]

    Rao C H, Jiang W H, Ling N 2000 Acta Opt. Sin. 20 1323 (in Chinese) [饶长辉, 姜文汉, 凌宁 2000光学学报 20 1323]

  • [1] 刘宇韬, 徐苗, 付兴虎, 付广伟. 大气湍流对空间相干光通信的相干探测性能影响.  , 2024, 73(10): 104206. doi: 10.7498/aps.73.20231885
    [2] 王明军, 席建霞, 王婉柔, 李勇俊, 张佳琳. 声波扰动对大气湍流内外尺度与折射率功率谱函数的影响分析.  , 2023, 72(12): 124303. doi: 10.7498/aps.72.20230003
    [3] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究: ${\boldsymbol{C}}_{\boldsymbol{n}}^{\boldsymbol 2}$廓线模式.  , 2023, 72(6): 069201. doi: 10.7498/aps.72.20221985
    [4] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究—方法和进展.  , 2023, 72(4): 049201. doi: 10.7498/aps.72.20221986
    [5] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [6] 李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽·阿不都克热木, 刘世韦. 湍流大气中随机粗糙表面激光回波空间相干性仿真.  , 2022, 71(14): 140201. doi: 10.7498/aps.71.20212420
    [7] 方云团, 王誉雅, 夏景. 基于光学Parity-Time对称微腔结构的大范围电场传感器.  , 2019, 68(19): 194201. doi: 10.7498/aps.68.20190784
    [8] 吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩. 常规气象参数估算南极泰山站近地面大气光学湍流强度.  , 2017, 66(3): 039201. doi: 10.7498/aps.66.039201
    [9] 王倩, 梅海平, 李玉剑, 邵士勇, 李学彬, 饶瑞中. 远海海面大气光学湍流实验测量.  , 2016, 65(7): 074206. doi: 10.7498/aps.65.074206
    [10] 王倩, 梅海平, 钱仙妹, 饶瑞中. 近地面大气光学湍流外尺度的实验研究.  , 2015, 64(22): 224216. doi: 10.7498/aps.64.224216
    [11] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究.  , 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [12] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩.  , 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [13] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究.  , 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [14] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径.  , 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [15] 王 华, 王向朝, 曾爱军, 杨 坤. 大气湍流对斜程传输准单色高斯-谢尔光束空间相干性的影响.  , 2008, 57(1): 634-638. doi: 10.7498/aps.57.634
    [16] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响.  , 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [17] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究.  , 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [18] 季小玲, 肖 希, 吕百达. 大气湍流对多色部分空间相干光传输特性的影响.  , 2004, 53(11): 3996-4001. doi: 10.7498/aps.53.3996
    [19] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构.  , 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
    [20] 王晓春, 周定文, 张以谟. 非线性光学位相共轭实时补偿大气湍流扰动.  , 1989, 38(3): 466-470. doi: 10.7498/aps.38.466
计量
  • 文章访问数:  6208
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-15
  • 修回日期:  2014-11-27
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map