搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常规气象参数估算南极泰山站近地面大气光学湍流强度

吴晓庆 田启国 金鑫淼 姜鹏 青春 蔡俊 周宏岩

引用本文:
Citation:

常规气象参数估算南极泰山站近地面大气光学湍流强度

吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩

Estimating optical turbulence of atmospheric surface layer at Antarctic Taishan station from meteorological data

Wu Xiao-Qing, Tian Qi-Guo, Jin Xin-Miao, Jiang Peng, Qing Chun, Cai Jun, Zhou Hong-Yan
PDF
导出引用
  • 选择最好的天文台址放置大口径望远镜一直是天文学家追求的目标.天文台址的选择与近地面层湍流强度大小以及随高度递减的快慢密切相关.与中纬度最好的天文台站相比,南极大陆具有极低的红外天空背景辐射、极低的可降水含量、极低的气溶胶和尘埃颗粒物含量、非常小的光污染、晴天日数多,无疑成为下一代大型光学/红外天文望远镜在地球上寻找地基站址的理想场所.本文建立了光学湍流强度估算方法,第一次对南极泰山站近地面大气光学湍流强度进行估算.模式输入的气象参数是2013年12月30日至2014年2月10日移动式大气参数测量系统在南极泰山站测量的数据,折射率结构常数Cn2的估算结果与温度脉动仪实测的Cn2进行了比较,并对估算方法进行了敏感性分析.测量结果和分析表明:南极内陆近地面Cn2具有明显的日变化特征,夜晚Cn2达210-14m-2/3,比白天强,日出和日落时刻附近出现最小值.Cn2的模式估算和实验测量的比对表明了模式用来估算南极近地面Cn2的可行性.Cn2的模式估算和测量差异最大值往往出现在日出和日落时刻附近.由于南极内陆大气大部分时间处于稳定状态,选用不同的结构常数函数估算的Cn2值差别不大,0.5 m,2.0 m两高度温差测量精度是影响Cn2估算值的主要因素.
    Turbulence intensity in the near-surface layer and its decrease rate with height are closely related to the quality of potential sites. Astronomers have been pursuing a perfect astronomical site to place the large-aperture telescopes. Compared with the best mid-latitude sites, Antarctic plateau inevitably becomes an ideal site for building the next-generation large optical and infrared telescopes, which is because of its low infrared sky emission, low atmospheric precipitable water vapour content, low aerosol and dust content of the atmosphere, and light pollution. In this paper, we establish a model of the atmospheric optical turbulence in surface layer, and use it to estimate Cn2 at Antarctic Taishan station for the first time. The meteorological parameters of the model input are the data measured by a mobile atmospheric parameter measurement system at Antarctic Taishan station from 30 December 2013 to 10 February 2014. The values of Cn2, estimated by the model and measured by a micro-thermometer, are compared. Sensitivity analysis of the estimation method is also carried out. The measurement results and analyses show that Cn2 obtained at Taishan station has obvious diurnal variation characteristics, with well-behaved peaks in the daytime and nighttime, and minima near sunrise and sunset. Cn2 obtained in the nighttime is stronger than that in daytime, more specifically, it is on the order of 210-14 m-2/3. The comparison between model predictions and experimental data demonstrates that it is feasible to estimate Cn2 in Antarctic by using this model. The biggest differences between Cn2 values obtained from the model and measurement usually emerge at sunrise and sunset, respectively. Considering the fact that Antarctic atmosphere is in a stable state most of the time, the values of Cn2 estimated by different nondimensional structure parameter functions are nearly the same. Thus, the measurement accuracy of air temperature difference from one height to another is the main factor that affects the estimated value of Cn2.
      通信作者: 吴晓庆, xqwu@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:41275020,41576185,11503023)、中国极地研究中心极地科学青年创新基金(批准号:CX20130201)、上海市自然科学基金(批准号:14ZR1444100)和中国极地环境综合考察与评估项目(批准号:CHINARE-2013-02-02,CHINARE-2014-02-03)资助的课题.
      Corresponding author: Wu Xiao-Qing, xqwu@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41275020, 41576185, 11503023), the Polar Science Innovation Fund for Young Scientists of Polar Research Institute of China (Grant No. CX20130201), the Shanghai Natural Science Foundation, China (Grant No. 14ZR1444100), and the Chinese Polar Environment Comprehensive Investigation and Assessment Programs (Grant Nos. CHINARE-2013-02-02, CHINARE-2014-02-03).
    [1]

    Hou J L 1994 Prog. Astron. 12 127 (in Chinese)[侯金良1994天文学进展12 127]

    [2]

    Lawrence J S, Ashley M C B, Tokovinin A, Travouillon T 2004 Nature 431 278

    [3]

    Marks R D, Vernin J, Azouit M, Briggs J W, Burton M G, Ashley M C B, Manigault J F 1996 Astron. Astrophys. Suppl. Ser. 118 385

    [4]

    Storey J W V, Ashley M C B, Burton M G 1996 PASA 13 35

    [5]

    Lawrence J S, Ashley M C, Burton M G, Storey J W 2003 Astronomy in Antarctica, 25th Meeting of the IAU Sydney, Australia, 18 July, 2003 p2

    [6]

    Yuan X Y, Cui X Q, Gong X F, Wang D, Yao Z Q, Li X N, Wen H K, Zhang Y J, Zhang R, Xu L Z, Zhou F, Wang L F, Shang Z H, Feng L L 2010 Proc. SPIE 7733 77331

    [7]

    Liu G R, Yuan X Y 2009 Acta Astronom. Sin. 50 224 (in Chinese)[刘根荣, 袁祥岩2009天文学报50 224]

    [8]

    Andreas E L 1988 J. Opt. Soc. Am. A 5 481

    [9]

    Wu X Q, Zhu X T, Huang H H, Hu S X 2012 Acta Opt. Sin. 32 0701004 (in Chinese)[吴晓庆, 朱行听, 黄宏华, 胡顺星2012光学学报32 0701004]

    [10]

    Hill R J 1978 Radio Sci. 13 953

    [11]

    Fairall C W, Larsen S E 1986 Bound. -Layer Meteor. 34 287

    [12]

    Haugen D A 1973 On Surface Layer Turbulence, Workshop on Micrometeorology (Boston:American Meteorological Society) pp101-149

    [13]

    Bataille P 1992 Analyse du Comportement d'un Systeme de Télécommunications Optique fonctionnant a 0,83μm Dans la Basse Atmosphere (Rennes:Université de Rennes1)

    [14]

    Dyer A J 1974 Bound.-Layer Meteor. 7 363

    [15]

    Hicks B B 1976 Q. J. R. Meteor. Soc. 102 535

    [16]

    Tian Q G, Chai B, Wu X Q, Jiang P, Ji T, Jin X M, Zhou H Y 2015 Polar Sci. 27 125 (in Chinese)[田启国, 柴博, 吴晓庆, 姜鹏, 纪拓, 金鑫淼, 周宏岩2015极地研究27 125]

    [17]

    Tian Q G, Chai B, Wu X Q, Jiang P, Ji T, Jin X M, Zhou H Y 2015 Chin. J. Polar Res. 26 140

    [18]

    Wu X Q, Tian Q G, Jiang P, Chai B, Qing C, Cai J, Jin X M, Zhou H Y 2015 Adv. Polar Sci. 26 305

    [19]

    Pant P, Stalin C S, Sagar R 1998 Astron. Astrophys. Suppl. Ser. 136 19

  • [1]

    Hou J L 1994 Prog. Astron. 12 127 (in Chinese)[侯金良1994天文学进展12 127]

    [2]

    Lawrence J S, Ashley M C B, Tokovinin A, Travouillon T 2004 Nature 431 278

    [3]

    Marks R D, Vernin J, Azouit M, Briggs J W, Burton M G, Ashley M C B, Manigault J F 1996 Astron. Astrophys. Suppl. Ser. 118 385

    [4]

    Storey J W V, Ashley M C B, Burton M G 1996 PASA 13 35

    [5]

    Lawrence J S, Ashley M C, Burton M G, Storey J W 2003 Astronomy in Antarctica, 25th Meeting of the IAU Sydney, Australia, 18 July, 2003 p2

    [6]

    Yuan X Y, Cui X Q, Gong X F, Wang D, Yao Z Q, Li X N, Wen H K, Zhang Y J, Zhang R, Xu L Z, Zhou F, Wang L F, Shang Z H, Feng L L 2010 Proc. SPIE 7733 77331

    [7]

    Liu G R, Yuan X Y 2009 Acta Astronom. Sin. 50 224 (in Chinese)[刘根荣, 袁祥岩2009天文学报50 224]

    [8]

    Andreas E L 1988 J. Opt. Soc. Am. A 5 481

    [9]

    Wu X Q, Zhu X T, Huang H H, Hu S X 2012 Acta Opt. Sin. 32 0701004 (in Chinese)[吴晓庆, 朱行听, 黄宏华, 胡顺星2012光学学报32 0701004]

    [10]

    Hill R J 1978 Radio Sci. 13 953

    [11]

    Fairall C W, Larsen S E 1986 Bound. -Layer Meteor. 34 287

    [12]

    Haugen D A 1973 On Surface Layer Turbulence, Workshop on Micrometeorology (Boston:American Meteorological Society) pp101-149

    [13]

    Bataille P 1992 Analyse du Comportement d'un Systeme de Télécommunications Optique fonctionnant a 0,83μm Dans la Basse Atmosphere (Rennes:Université de Rennes1)

    [14]

    Dyer A J 1974 Bound.-Layer Meteor. 7 363

    [15]

    Hicks B B 1976 Q. J. R. Meteor. Soc. 102 535

    [16]

    Tian Q G, Chai B, Wu X Q, Jiang P, Ji T, Jin X M, Zhou H Y 2015 Polar Sci. 27 125 (in Chinese)[田启国, 柴博, 吴晓庆, 姜鹏, 纪拓, 金鑫淼, 周宏岩2015极地研究27 125]

    [17]

    Tian Q G, Chai B, Wu X Q, Jiang P, Ji T, Jin X M, Zhou H Y 2015 Chin. J. Polar Res. 26 140

    [18]

    Wu X Q, Tian Q G, Jiang P, Chai B, Qing C, Cai J, Jin X M, Zhou H Y 2015 Adv. Polar Sci. 26 305

    [19]

    Pant P, Stalin C S, Sagar R 1998 Astron. Astrophys. Suppl. Ser. 136 19

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算.  , 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究—方法和进展.  , 2023, 72(4): 049201. doi: 10.7498/aps.72.20221986
    [3] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响.  , 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [4] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响.  , 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [5] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究.  , 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [6] 李书磊, 刘磊, 高太长, 黄威, 胡帅. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析.  , 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [7] 左冬冬, 侯威, 王文祥. 中国西南地区干旱Copula函数模型对样本量的敏感性分析.  , 2015, 64(10): 100203. doi: 10.7498/aps.64.100203
    [8] 李红祺. 随机平衡设计傅里叶振幅敏感性分析方法和拓展傅里叶振幅敏感性分析方法在陆面过程模式敏感性分析中的应用探索.  , 2015, 64(6): 069201. doi: 10.7498/aps.64.069201
    [9] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究.  , 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [10] 刁利杰, 张小飞, 陈帝伊. 分数阶并联RLαCβ电路.  , 2014, 63(3): 038401. doi: 10.7498/aps.63.038401
    [11] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能.  , 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [12] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究.  , 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [13] 王建栋, 郭维栋, 李红祺. 拓展傅里叶幅度敏感性检验(EFAST)在陆面过程模式中参数敏感性分析的应用探索.  , 2013, 62(5): 050202. doi: 10.7498/aps.62.050202
    [14] 秦玉香, 王飞, 沈万江, 胡明. 氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理.  , 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [15] 吴浩, 侯威, 钱忠华, 胡经国. 基于气候变化综合指数的中国近50年来气候变化敏感性研究.  , 2012, 61(14): 149205. doi: 10.7498/aps.61.149205
    [16] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析.  , 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [17] 李桂琴, 蔡军. graphene量子点的起伏效应对尺寸的敏感性研究.  , 2009, 58(9): 6453-6458. doi: 10.7498/aps.58.6453
    [18] 罗 林, 王 黎, 程卫东, 沈忙作. 天文图像多帧盲反卷积收敛性的增强方法.  , 2006, 55(12): 6708-6714. doi: 10.7498/aps.55.6708
    [19] 张光寅, 王宝明. 晶体剩余反射带短波边弱振动反射光谱结构的异常敏感性.  , 1984, 33(9): 1306-1313. doi: 10.7498/aps.33.1306
    [20] 雷啸霖. Tc级数的收敛半径对声子谱高频行为的敏感性.  , 1981, 30(8): 1127-1131. doi: 10.7498/aps.30.1127
计量
  • 文章访问数:  5678
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-02
  • 修回日期:  2016-10-09
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map