搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维旋转谐振子势中单粒子的跳频压缩及演化

王渝 吴艺豪 李易璞 卢凯翔 伊天成 张云波

引用本文:
Citation:

二维旋转谐振子势中单粒子的跳频压缩及演化

王渝, 吴艺豪, 李易璞, 卢凯翔, 伊天成, 张云波

Squeezing and evolution of single particle by frequency jumping in two-dimensional rotating harmonic

Wang Yu, Wu Yi-Hao, Li Yi-Pu, Lu Kai-Xiang, Yi Tian-Cheng, Zhang Yun-Bo
PDF
HTML
导出引用
  • 本文主要研究二维旋转谐振子势中单粒子的动力学行为, 通过跳频的方式分析该粒子的压缩演化过程, 并分析了相应的物理机制. 一方面, 研究跳频过程对回旋半径模式的压缩演化, 通过选择适当的跳频时刻, 分析跳频过程对压缩的影响. 研究表明, 回旋半径坐标的压缩程度并未在跳频时刻发生改变, 但可在后续的演化中出现更强的压缩现象. 另一方面, 主要研究跳频过程中心导向模式的压缩演化. 通过参数的选择, 分析了两种压缩模式, 即发散模式和振荡模式的压缩及演化. 有趣的是, 在中心导向模式压缩中, 外势存在一个由旋转角速度决定的临界势阱纵横比. 压缩模式在此处发生突变, 且在振荡模式中, 势阱纵横比趋于该临界值时, 将出现明显的压缩.
    The control of microscopic particle behavior based on a specific external field has always been a research hotspot in the field of physics. Many studies have been exploring various methods to manipulate and control the behavior of particles at a microscopic level. In this work, we investigate the phenomenon of single-particle squeezing induced by frequency jumping in a two-dimensional rotating harmonic oscillator potential. Squeezing, as a quantum mechanical phenomenon, has attracted significant attention due to its potential applications in various fields. It refers to the reduction of fluctuations in certain physical quantities, allowing for more precise measurement results. Squeezing phenomena have been extensively studied in different physical systems, including optics, atomic physics, and solid-state physics. However, there have been few reports on the quantum state squeezing phenomenon induced by frequency jumping in a rotating harmonic oscillator potential. Therefore, our study aims to fill this gap and shed light on this intriguing phenomenon. To explore the squeezing phenomenon induced by frequency jumping, we focus on the fluctuations and squeezing of the single particle’s cyclotron radius coordinate and center-guided coordinate in the two-dimensional rotating harmonic oscillator potential. Through numerical simulations and theoretical analysis, we can understand the influence of frequency jumping on the degree of squeezing and reveal the underlying physical mechanism of squeezing evolution. In this work, we first investigate the influence of frequency jumping on the squeezing evolution of the cyclotron radius mode. By carefully selecting appropriate jumping moments, we analyze the influence of frequency jumping on the degree of squeezing. Our research results show that the degree of squeezing in the cyclotron radius coordinate remains unchanged at the jumping moment. However, we observe a stronger squeezing phenomenon in the subsequent evolution process. This indicates that frequency jumping plays a crucial role in squeezing evolution of the cyclotron radius mode. Furthermore, we focus on the squeezing evolution of the center-guided mode during frequency jumping. By selecting suitable parameters, we analyze the squeezing and evolution of two squeezing modes: the divergent mode and the oscillatory mode. Interestingly, we discover the existence of a critical potential trap aspect ratio, which is determined by the rotation angular velocity of the external potential. When the aspect ratio approaches this critical value, the squeezing mode undergoes a transition, and a significant squeezing phenomenon appears in the oscillatory mode. This finding provides valuable insights into the origin and control of squeezing phenomena. Finally, we discuss the potential applications of these squeezing phenomena. Squeezing has significant implications in the fields of quantum sensing and quantum information processing. Through a deeper understanding of the squeezing evolution process caused by frequency jump, we can better control the microscopic particle behavior through external field. This knowledge opens up new possibilities for future physical research and technical applications.
      通信作者: 张云波, ybzhang@zstu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12074340)和浙江理工大学科学基金 (批准号: 20062098-Y) 资助的课题.
      Corresponding author: Zhang Yun-Bo, ybzhang@zstu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074340) and the Zhejiang Sci-Tech University of Technology Science Foundation, China (Grant No. 20062098-Y).
    [1]

    Burd S C, Srinivas R, Bollinger J J, Wilson A C, Wineland D J, Leibfried D, Slichter D H, Allcock D T C 2019 Science 364 1163Google Scholar

    [2]

    Fletcher R J, A Shaffer, Wilson C C, Patel P B, Yan Z, Crépel V, Mukherjee B, Zwierlein M W 2021 Science 372 1318Google Scholar

    [3]

    Sharma V, Mueller E J 2022 Phys. Rev. A 105 023310Google Scholar

    [4]

    Hu J, Chen W, Vendeiro Z, Urvoy A, Braverman B, Vuletić V 2017 Phys. Rev. A 96 050301Google Scholar

    [5]

    Shankar A, Tang Chen, Affolter M, Gilmore K, Dubin D H E, Parker S, Holland M J, Bollinger J J 2020 Phys. Rev. A 102 053106Google Scholar

    [6]

    Maslowski T, Sedlmayr N 2023 Phys. Rev. B 108 094306Google Scholar

    [7]

    Yuen H P 1976 Phys. Rev. A 13 2226Google Scholar

    [8]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar

    [9]

    Hosten O, Engelsen N J, Krishnakumar R, Kasevich M A 2016 Nature 529 505Google Scholar

    [10]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952Google Scholar

    [11]

    Lecocq F, Clark J B, Simmonds R W, Aumentado J, Teufel J D 2015 Phys. Rev. X 5 041037Google Scholar

    [12]

    Pirkkalainen J M, Damskägg E, Brandt M, Massel F, Sillanpää M A 2015 Phys. Rev. Lett. 115 243601Google Scholar

    [13]

    Meekhof D M, Monroe C, E King B, M Itano W, Wineland D J 1996 Phys. Rev. Lett. 76 1796Google Scholar

    [14]

    Kienzler D, Lo H Y, Keitch B, de Clercq L, Leupold F, Lindenfelser F, Marinelli M, Negnevitsky V, Home J P 2015 Science 347 53Google Scholar

    [15]

    Meylahn F, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 121103Google Scholar

    [16]

    Pezzè L, Smerzi A 2020 Phys. Rev. Lett. 125 210503Google Scholar

    [17]

    Li T, Wang W, Yi X 2021 Phys. Rev. A 104 013521Google Scholar

    [18]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033Google Scholar

    [19]

    Davis E, Bentsen G, Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601Google Scholar

    [20]

    Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V, Oberthaler M K 2016 Phys. Rev. Lett. 117 013001Google Scholar

    [21]

    Malnou M, Palken D A, Brubaker B M, Vale Leila R, Hilton Gene C, Lehnert K W 2019 Phys. Rev. X 9 021023Google Scholar

    [22]

    Eddins A, Schreppler S, Toyli D M, Martin L S, Hacohen-Gourgy S, Govia L C G, Ribeiro H, Clerk A A, Siddiqi I 2018 Phys. Rev. Lett. 120 040505Google Scholar

    [23]

    Janszky J, Yushin Y Y 1986 Opt. Commun. 59 151Google Scholar

    [24]

    Schleich W, Wheeler J A 1987 Nature 326 574Google Scholar

    [25]

    Graham R 1987 J. Mod. Opt. 34 873Google Scholar

    [26]

    Ma X, Rhodes W 1989 Phys. Rev. A 39 1941Google Scholar

    [27]

    Janszky J, Yushin Y 1989 Phys. Rev. A 39 5445Google Scholar

    [28]

    Aliga J, Crespo G, Proto A N 1990 Phys. Rev. A 42 618Google Scholar

    [29]

    Lo C F 1990 Phys. Scr. 42 389Google Scholar

    [30]

    Lo C F 1990 J. Phys. A 23 1155Google Scholar

    [31]

    Agarwal G S, Kumar S A 1991 Phys. Rev. Lett. 67 3665Google Scholar

    [32]

    Fan H Y, Zaidi H R 1989 Can. J. Phys. 67 152Google Scholar

    [33]

    Gerry C C, Plumb M F 1990 J. Phys. A 23 3997Google Scholar

    [34]

    Dodonov V V, Klimov A B, Man’ko V I 1990 Phys. Lett. A 149 225Google Scholar

    [35]

    Janszky J, Adam P 1992 Phys. Rev. A 46 6091Google Scholar

    [36]

    Xin M, Leong W S, Chen Z, Wang Y, Lan S Y 2021 Phys. Rev. Lett. 127 183602Google Scholar

    [37]

    Sompet P, Fung Y H, Schwartz E, Hunter M D J, Phrompao J, Andersen M F 2017 Phys. Rev. A 95 031403(RGoogle Scholar

  • 图 1  三次跳频下回旋半径涨落随$ \beta_+t $的演化过程, 其中$ \varepsilon = 0.125 $和$ \varOmega/\omega = 0.9 $. 实线和虚线分别表示$ \Delta \widetilde \xi $和$ \Delta \widetilde \eta $演化曲线

    Fig. 1.  Variances of cyclotron coordinates evolve with $ \beta_+t $ under three frequency jumping, where $ \varepsilon = 0.125 $ and $ \varOmega/\omega = 0.9 $. The solid and dashed lines respectively represent the evolution curves of $ \Delta \widetilde \xi $ and $ \Delta \widetilde \eta $.

    图 2  变量$ (\varepsilon, \varOmega/\omega) $中, 两个压缩模式的相图

    Fig. 2.  In the variables$ (\varepsilon, \varOmega/\omega) $, the phase diagram of squeezing modes.

    图 3  中心导向坐标$ \{\widetilde X, \widetilde Y\} $最大压缩量随$ \varepsilon $的变化曲线, 其中$ \varOmega/\omega = 0.8 $. 蓝线和红线分别为$ \Delta \widetilde X $和$ \Delta \widetilde Y $的曲线

    Fig. 3.  Variances of maximum squeezing of guiding center coordinates change with $ \varepsilon $, where $ \varOmega/\omega = 0.8 $. Blue and red lines represent $ \Delta \widetilde X $ and $ \Delta \widetilde Y $.

    图 4  中心导向坐标$ \widetilde X $和$ \widetilde Y $在最大压缩量处的涨落 (a)振荡模式; (b)发散模式

    Fig. 4.  Fluctuations of guiding center coordinates $ \widetilde X $ and $ \widetilde Y $ at maximum squeezing: (a) Oscillation mode; (b) divergence mode.

    Baidu
  • [1]

    Burd S C, Srinivas R, Bollinger J J, Wilson A C, Wineland D J, Leibfried D, Slichter D H, Allcock D T C 2019 Science 364 1163Google Scholar

    [2]

    Fletcher R J, A Shaffer, Wilson C C, Patel P B, Yan Z, Crépel V, Mukherjee B, Zwierlein M W 2021 Science 372 1318Google Scholar

    [3]

    Sharma V, Mueller E J 2022 Phys. Rev. A 105 023310Google Scholar

    [4]

    Hu J, Chen W, Vendeiro Z, Urvoy A, Braverman B, Vuletić V 2017 Phys. Rev. A 96 050301Google Scholar

    [5]

    Shankar A, Tang Chen, Affolter M, Gilmore K, Dubin D H E, Parker S, Holland M J, Bollinger J J 2020 Phys. Rev. A 102 053106Google Scholar

    [6]

    Maslowski T, Sedlmayr N 2023 Phys. Rev. B 108 094306Google Scholar

    [7]

    Yuen H P 1976 Phys. Rev. A 13 2226Google Scholar

    [8]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar

    [9]

    Hosten O, Engelsen N J, Krishnakumar R, Kasevich M A 2016 Nature 529 505Google Scholar

    [10]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952Google Scholar

    [11]

    Lecocq F, Clark J B, Simmonds R W, Aumentado J, Teufel J D 2015 Phys. Rev. X 5 041037Google Scholar

    [12]

    Pirkkalainen J M, Damskägg E, Brandt M, Massel F, Sillanpää M A 2015 Phys. Rev. Lett. 115 243601Google Scholar

    [13]

    Meekhof D M, Monroe C, E King B, M Itano W, Wineland D J 1996 Phys. Rev. Lett. 76 1796Google Scholar

    [14]

    Kienzler D, Lo H Y, Keitch B, de Clercq L, Leupold F, Lindenfelser F, Marinelli M, Negnevitsky V, Home J P 2015 Science 347 53Google Scholar

    [15]

    Meylahn F, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 121103Google Scholar

    [16]

    Pezzè L, Smerzi A 2020 Phys. Rev. Lett. 125 210503Google Scholar

    [17]

    Li T, Wang W, Yi X 2021 Phys. Rev. A 104 013521Google Scholar

    [18]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033Google Scholar

    [19]

    Davis E, Bentsen G, Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601Google Scholar

    [20]

    Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V, Oberthaler M K 2016 Phys. Rev. Lett. 117 013001Google Scholar

    [21]

    Malnou M, Palken D A, Brubaker B M, Vale Leila R, Hilton Gene C, Lehnert K W 2019 Phys. Rev. X 9 021023Google Scholar

    [22]

    Eddins A, Schreppler S, Toyli D M, Martin L S, Hacohen-Gourgy S, Govia L C G, Ribeiro H, Clerk A A, Siddiqi I 2018 Phys. Rev. Lett. 120 040505Google Scholar

    [23]

    Janszky J, Yushin Y Y 1986 Opt. Commun. 59 151Google Scholar

    [24]

    Schleich W, Wheeler J A 1987 Nature 326 574Google Scholar

    [25]

    Graham R 1987 J. Mod. Opt. 34 873Google Scholar

    [26]

    Ma X, Rhodes W 1989 Phys. Rev. A 39 1941Google Scholar

    [27]

    Janszky J, Yushin Y 1989 Phys. Rev. A 39 5445Google Scholar

    [28]

    Aliga J, Crespo G, Proto A N 1990 Phys. Rev. A 42 618Google Scholar

    [29]

    Lo C F 1990 Phys. Scr. 42 389Google Scholar

    [30]

    Lo C F 1990 J. Phys. A 23 1155Google Scholar

    [31]

    Agarwal G S, Kumar S A 1991 Phys. Rev. Lett. 67 3665Google Scholar

    [32]

    Fan H Y, Zaidi H R 1989 Can. J. Phys. 67 152Google Scholar

    [33]

    Gerry C C, Plumb M F 1990 J. Phys. A 23 3997Google Scholar

    [34]

    Dodonov V V, Klimov A B, Man’ko V I 1990 Phys. Lett. A 149 225Google Scholar

    [35]

    Janszky J, Adam P 1992 Phys. Rev. A 46 6091Google Scholar

    [36]

    Xin M, Leong W S, Chen Z, Wang Y, Lan S Y 2021 Phys. Rev. Lett. 127 183602Google Scholar

    [37]

    Sompet P, Fung Y H, Schwartz E, Hunter M D J, Phrompao J, Andersen M F 2017 Phys. Rev. A 95 031403(RGoogle Scholar

  • [1] 蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军. 双模压缩态量子相干性演化的实验研究.  , 2023, 72(3): 034202. doi: 10.7498/aps.72.20221923
    [2] 陈泽锐, 刘光存, 俞振华. 谐振子势阱中双费米原子光钟的碰撞频移.  , 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [3] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量.  , 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [4] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪.  , 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [5] 李兴华, 杨亚天. 球坐标中三维各向同性谐振子的类经典态.  , 2015, 64(8): 080301. doi: 10.7498/aps.64.080301
    [6] 余学才, 汪平和, 张利勋. 光晶格动量依赖偶极势中原子运动.  , 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [7] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响.  , 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [8] 李兴华, 杨亚天, 徐躬耦. 类经典态——谐振子和无限深方势阱.  , 2009, 58(11): 7466-7472. doi: 10.7498/aps.58.7466
    [9] 张民仓, 王振邦. 一类环状非球谐振子势场中相对论粒子的束缚态解.  , 2007, 56(7): 3688-3692. doi: 10.7498/aps.56.3688
    [10] 张婉娟, 王治国, 谢双媛, 羊亚平. 频率变化的压缩态光场与原子的相互作用.  , 2007, 56(4): 2168-2174. doi: 10.7498/aps.56.2168
    [11] 金 硕, 解炳昊. 外磁场中海森伯反铁磁模型的代数结构和压缩态解.  , 2006, 55(8): 3880-3884. doi: 10.7498/aps.55.3880
    [12] 厉江帆, 黄春佳, 姜宗福, 黄祖洪. 含时耦合谐振子系统的时间演化与双模压缩态.  , 2005, 54(2): 522-529. doi: 10.7498/aps.54.522
    [13] 陆法林, 陈昌远. 环形非球谐振子势Klein-Gordon方程的束缚态.  , 2004, 53(6): 1652-1656. doi: 10.7498/aps.53.1652
    [14] 邓文基, 许运华, 刘 平. 测不准关系和最小不确定态.  , 2003, 52(12): 2961-2964. doi: 10.7498/aps.52.2961
    [15] 李伯臧, 李玲. 量子动边界广义含时谐振子之精确的指数-正弦型演化态.  , 2001, 50(9): 1654-1660. doi: 10.7498/aps.50.1654
    [16] 党兰芬. 含时谐振子系统的时间演化及压缩态.  , 1998, 47(7): 1071-1077. doi: 10.7498/aps.47.1071
    [17] 于肇贤, 王继锁, 刘业厚. 非简谐振子广义奇偶相干态的高阶压缩效应及反聚束效应.  , 1997, 46(9): 1693-1698. doi: 10.7498/aps.46.1693
    [18] 倪致祥. 非简谐振子广义相干态的叠加态.  , 1997, 46(9): 1687-1692. doi: 10.7498/aps.46.1687
    [19] 徐子(马文). 非简谐振子的奇偶广义相干态.  , 1996, 45(11): 1807-1811. doi: 10.7498/aps.45.1807
    [20] 许晶波, 刘宜昌, 高孝纯. 二次型含时间的谐振子系统的压缩态和压缩相干态.  , 1995, 44(2): 216-224. doi: 10.7498/aps.44.216
计量
  • 文章访问数:  1771
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-01-10
  • 上网日期:  2024-01-26
  • 刊出日期:  2024-04-05

/

返回文章
返回
Baidu
map