Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scattering effect of very low frequency transmitter signals on energetic electrons in Earth’s inner belt and slot region

Liu Yang-Xi-Zi Xiang Zheng Guo Jian-Guang Gu Xu-Dong Fu Song Zhou Ruo-Xian Hua Man Zhu Qi Yi Juan Ni Bin-Bin

Citation:

Scattering effect of very low frequency transmitter signals on energetic electrons in Earth’s inner belt and slot region

Liu Yang-Xi-Zi, Xiang Zheng, Guo Jian-Guang, Gu Xu-Dong, Fu Song, Zhou Ruo-Xian, Hua Man, Zhu Qi, Yi Juan, Ni Bin-Bin
PDF
HTML
Get Citation
  • Whistler mode very low frequency (VLF) waves from man-made ground-based transmitters in a frequency range of 10–30 kHz are mainly used for submarine communication, and they propagate primarily in the Earth-lower ionosphere waveguide and part of their energy can leak into the inner magnetosphere, leading the energetic electrons in inner radiation belt and slot region to precipitate into atmosphere and then affect the energetic electron dynamics in the near-Earth space. The scattering effects of artificial VLF signals from NWC, NAA and DHO38 transmitters on energetic electrons in Earth’s inner belt and slot region are investigated in detail in this work. Based on the quasi-linear theory and the Full Diffusion Code, we calculate the bounce-average pitch angle diffusion coefficients induced by NWC, NAA and DHO38 VLF transmitter signals, for which the resonance harmonics |N| ≤ 10 are considered, respectively. We further implement the one-dimensional Fokker-Planck diffusion simulations by using the available pitch angle diffusion rates to model the dynamic evolutions of energetic electrons caused by the scattering of the VLF transmitter signals in the inner belt and slot region in 200 d. The simulation results indicate that the NWC VLF transmitter signals are dominant in scattering ~100 keV electrons with pitch angles less than 60° at L ≤ 1.8, and the mainly scattered electron energy values increase with L-shell decreasing , from L = 1.8 to L = 1.5, the mainly scattered electron energy increases from 90–120 keV to 550–650 keV. The NAA and DHO38 VLF transmitter signals are important in scattering < 20 keV electrons with pitch angles less than 70° at higher L-shells (2.2 ≤ L ≤ 2.7), from L = 2.2 to L = 2.7, the mainly scattered electron energy decreases from 10–20 keV to several keV. The VLF transmitter signals are found to have a slight influence on the loss of energetic electrons with pitch angles larger than 80°.
      Corresponding author: Xiang Zheng, xiangzheng@whu.edu.cn ; Guo Jian-Guang, guojg@cma.gov.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 41704162, 41974186, 41674163, 41904144, 41904143), the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000), the Pre-research Projects on Civil Aerospace Technologies funded by the China National Space Administration (Grant Nos. D020303, D020308, D020104), and the China Postdoctoral Science Foundation (Grant No. 2019M662700)
    [1]

    Xiang Z, Tu W, Li X, Ni B, Morley S K, Baker D N 2017 J. Geophys. Res. Space Phys. 122 9858Google Scholar

    [2]

    Xiang Z, Tu W, Ni B, Henderson M G, Cao X 2018 Geophys. Res. Lett. 45 8035Google Scholar

    [3]

    Ma X, Xiang Z, Ni B, Fu S, Cao X, Hua M, Guo D, Guo Y, Gu X, Liu Z, Zhu Q 2020 Earth Planet. Phys. 4 598Google Scholar

    [4]

    Rosen A, Sanders N L 1971 J. Geophys. Res. 76 110Google Scholar

    [5]

    Selesnick R S 2015 J. Geophys. Res. Space Phys. 120 2912Google Scholar

    [6]

    Xiang Z, Li X, Selesnick R, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2019 Geophys. Res. Lett. 46 1919Google Scholar

    [7]

    Xiang Z, Li X, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 e2019JA027678

    [8]

    Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 e2020JA028042

    [9]

    Zhang K, Li X, Zhao H, Schiller Q, Khoo L Y, Xiang Z, Selesnick R, Temerin M A, Sauvaud J A 2019 Geophys. Res. Lett. 46 544Google Scholar

    [10]

    Ni B, Hua M, Zhou R, Yi J, Fu S 2017 Geophys. Res. Lett. 44 3465Google Scholar

    [11]

    Hua M, Ni B, Fu S, Gu X, Xiang Z, Cao X, Zhang W, He Y, Huang H, Lou Y, Zhang Y 2018 Geophys. Res. Lett. 45 10057Google Scholar

    [12]

    Rodger C J, Clilverd M A, McCormick R J 2003 J. Geophys. Res. 108 1462Google Scholar

    [13]

    Clilverd M A, Rodger C J, Nunn D 2004 J. Geophys. Res. A 109 12208Google Scholar

    [14]

    Green A, Li W, Ma Q, Shen X C, Bortnik J, Hospodarsky G B 2020 Geophys. Res. Lett. 47 e2020GL089584

    [15]

    Ma Q, Li W, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B 2016 J. Geophys. Res. Space Phys. 121 274Google Scholar

    [16]

    顾旭东, 何颖, 倪彬彬, 付松, 花漫, 项正 2020 地球 63 2121Google Scholar

    Gu X D, He Y, Ni B B, Fu S, Hua M, Xiang Z 2020 Chin. J. Geophys. 63 2121Google Scholar

    [17]

    Ni B, Yan L, Fu S, Gu X, Cao X, Xiang Z, Zhang Y 2020 Geophys. Res. Lett. 47 e2019GL086487

    [18]

    Ma Q, Mourenas D, Li W, Artemyev A, Thorne R M 2017 Geophys. Res. Lett. 44 6483Google Scholar

    [19]

    Ross J P J, Meredith N P, Glauert S A, Horne R B, Clilverd M A 2019 J. Geophys. Res. Space Phys. 124 5260Google Scholar

    [20]

    Hua M, Li W, Ni B, Ma Q, Green A, Shen X, Claudepierre S G, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G D 2020 Nat. Commun. 11 4847Google Scholar

    [21]

    Chen Y P, Yang G B, Ni B B, Zhao Z Y, Gu X D, Zhou C, Wang F 2016 Adv. Space Res. 57 1871Google Scholar

    [22]

    Chen Y, Ni B, Gu X, Zhao Z, Yang G, Zhou C, Zhang Y 2017 Sci. Chin. Technol. Sci. 60 166Google Scholar

    [23]

    易娟, 顾旭东, 李志鹏, 林仁桐, 蔡毅徽, 陈隆, 倪彬彬, 乐新安 2019 地球 62 3223Google Scholar

    Yi J, Gu X D, Li Z P, Lin R T, Cai Y H, Chen L, Ni B B, Yue X A 2019 Chin. J. Geophys. 62 3223Google Scholar

    [24]

    Yi J, Gu X, Cheng W, Tang X, Chen L, Ni B, Zhou R, Zhao Z, Wang Q, Zhou L 2020 Earth Planet. Phys. 4 238Google Scholar

    [25]

    Zhou R, Gu X, Yang K, Li G, Ni B, Yi J, Chen L, Zhao F, Zhao Z, Wang Q, Zhou L 2020 Earth Planet. Phys. 4 120Google Scholar

    [26]

    Vampola A L, Kuck G A 1978 J. Geophys. Res. 83 2543Google Scholar

    [27]

    Koons H C, Edgar B C, Vampola A L 1981 J. Geophys. Res. 86 640Google Scholar

    [28]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397Google Scholar

    [29]

    Gamble R J, Rodger C J, Clilverd M A, Sauvaud J A, Thomson N R, Stewart S L, McCormick R J, Parrot M, Berthelier J J 2008 J. Geophys. Res. A 113 10211Google Scholar

    [30]

    Graf K L, Inan U S, Piddyachiy D, Kulkarni P, Parrot M, Sauvaud J A 2009 J. Geophys. Res. A 114 07205Google Scholar

    [31]

    Selesnick R S, Albert J M, Starks M J 2013 J. Geophys. Res. Space Phys. 118 628Google Scholar

    [32]

    Agapitov O V, Artemyev A V, Mourenas D, Kasahara Y, Krasnoselskikh V 2014 J. Geophys. Res. Space Phys. 119 2876Google Scholar

    [33]

    Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056Google Scholar

    [34]

    Imhof W L, Reagan J B, Voss H D, Gaines E E, Datlowe D W, Mobilia J, Helliwell R A, Inan U S, Katsufrakis J, Joiner R G 1983 Geophys. Res. Lett. 10 361Google Scholar

    [35]

    Inan U S, Chang H C, Helliwell R A, Imhof W L, Reagan J B, Walt M 1985 J. Geophys. Res. 90 359Google Scholar

    [36]

    王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2011 60 039401Google Scholar

    Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2011 Acta Phys. Sin. 60 039401Google Scholar

    [37]

    Sauvaud J A, Maggiolo R, Jacquey C, Parrot M, Berthelier J J, Gamble R J, Rodger C J 2008 Geophys. Res. Lett. 35 L09101Google Scholar

    [38]

    Clilverd M A, Rodger C J, Gamble R, Meredith N P, Parrot M, Berthelier J J, Thomson N R 2008 J. Geophys. Res. A 113 04211Google Scholar

    [39]

    Kulkarni P, Inan U S, Bell T F, Bortnik J 2008 J. Geophys. Res. A 113 07214Google Scholar

    [40]

    张振霞, 王辰宇, 李强, 吴书贵 2014 63 079401Google Scholar

    Zhang Z X, Wang C Y, Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401Google Scholar

    [41]

    罗旭东, 牛胜利, 左应红 2015 64 069401Google Scholar

    Luo X D, Niu S L, Zuo Y H 2015 Acta Phys. Sin. 64 069401Google Scholar

    [42]

    Meredith N P, Horne R B, Clilverd M A, Ross J P J 2019 J. Geophys. Res. Space Phys. 124 5246Google Scholar

    [43]

    Ozhogin P, Tu J, Song P, Reinisch B W 2012 J. Geophys. Res. A 117 06225Google Scholar

    [44]

    Ni B, Thorne R M, Meredith N P, Shprits Y Y, Horne R B 2011 J. Geophys. Res. A 116 10207Google Scholar

    [45]

    Ni B, Thorne R M, Shprits Y Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106Google Scholar

    [46]

    Ma Q, Artemyev A V, Mourenas D, Li W, Thorne R M, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Wygant J 2017 Geophys. Res. Lett. 44 12057

    [47]

    Xiao F, Su Z, Zheng H, Wang S 2009 J. Geophys. Res. A 114 03201Google Scholar

    [48]

    Xiao F, Shen C, Wang Y, Zheng H, Wang S 2008 J. Geophys. Res. A 113 05203Google Scholar

  • 图 1  计算得到的三个台站的波幅

    Figure 1.  Calculated wave amplitudes from three VLF transmitters.

    图 2  NWC台站信号在L = 1.5—2.2导致的电子弹跳平均投掷角扩散系数$\left\langle {{D_{\alpha \alpha }}} \right\rangle $. 图中横坐标为赤道投掷角${\alpha _{{\rm{eq}}}}$, 纵坐标为电子能量${E_{\rm{k}}}$, 颜色表示扩散系数的大小

    Figure 2.  The color-code bounce-averaged pitch angle diffusion coefficients $\left\langle {{D_{\alpha \alpha }}} \right\rangle $ as a function of equatorial pitch angle ${\alpha _{{\rm{eq}}}}$ and electron kinetic energy ${E_{\rm{k}}}$ induced by VLF transmitter signals from NWC at L = 1.5–2.2.

    图 3  NAA台站信号在L = 1.7—3.0导致的电子弹跳平均投掷角扩散系数. 格式同图2

    Figure 3.  Same as in Fig. 2 except for VLF transmitter signals from NAA at L = 1.7–3.0.

    图 4  DHO38台站信号在L = 1.7−2.9导致的电子弹跳平均投掷角扩散系数. 格式同图2

    Figure 4.  Same as in figure 2 except for VLF transmitter signals from DHO38 at L = 1.7−2.9.

    图 5  L = 1.8处, 不同VLF台站信号对电子散射效果的模拟, 从左至右分别为NWC, NAA, DHO38台站信号单独散射和三个台站信号联合散射 (a1)−(d4)不同模拟时间的电子相空间密度分布二维图, 颜色表示电子相空间密度的大小; (e1)−(h4)指定能级电子的相空间密度随时间演化的过程图, 线条颜色表示不同的时间

    Figure 5.  (a1)−(d4) Two dimensional distributions of color-code electron phase space density (PSD) as a function of equatorial pitch angle ${\alpha _{{\rm{eq}}}}$ and electron kinetic energy ${E_{\rm{k}}}$ at the indicated interaction time stamps at L = 1.8 induced by different VLF transmitter signals (from left to right): NWC, NAA, DHO38 individual scattering and combined scattering; (e1)−(h4) temporal evolution of electron PSD distribution as a function of ${\alpha _{{\rm{eq}}}}$ for the indicated four electron energies at the color-coded interaction time stamps.

    图 6  L = 2.2处, 不同VLF台站信号对电子的散射效果模拟, 格式同图5

    Figure 6.  Same as in Fig. 5 except for at L = 2.2.

    图 7  L = 2.6处, 不同VLF台站信号对电子的散射效果模拟. 格式同图5

    Figure 7.  Same as in Fig. 5 except for at L = 2.6.

    表 1  选取计算的台站信息

    Table 1.  The information of the three selected VLF transmitters.

    台站频率/kHz功率/kW经纬度L-shell磁层中波
    幅范围/L
    NWC19.8100021.8°S
    114.2°E
    1.421.5—2.2
    NAA24.0100044.6°N
    67.3°W
    2.741.7—3.0
    DHO3823.430053.1°N
    7.6°E
    2.381.7—2.9
    DownLoad: CSV
    Baidu
  • [1]

    Xiang Z, Tu W, Li X, Ni B, Morley S K, Baker D N 2017 J. Geophys. Res. Space Phys. 122 9858Google Scholar

    [2]

    Xiang Z, Tu W, Ni B, Henderson M G, Cao X 2018 Geophys. Res. Lett. 45 8035Google Scholar

    [3]

    Ma X, Xiang Z, Ni B, Fu S, Cao X, Hua M, Guo D, Guo Y, Gu X, Liu Z, Zhu Q 2020 Earth Planet. Phys. 4 598Google Scholar

    [4]

    Rosen A, Sanders N L 1971 J. Geophys. Res. 76 110Google Scholar

    [5]

    Selesnick R S 2015 J. Geophys. Res. Space Phys. 120 2912Google Scholar

    [6]

    Xiang Z, Li X, Selesnick R, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2019 Geophys. Res. Lett. 46 1919Google Scholar

    [7]

    Xiang Z, Li X, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 e2019JA027678

    [8]

    Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 e2020JA028042

    [9]

    Zhang K, Li X, Zhao H, Schiller Q, Khoo L Y, Xiang Z, Selesnick R, Temerin M A, Sauvaud J A 2019 Geophys. Res. Lett. 46 544Google Scholar

    [10]

    Ni B, Hua M, Zhou R, Yi J, Fu S 2017 Geophys. Res. Lett. 44 3465Google Scholar

    [11]

    Hua M, Ni B, Fu S, Gu X, Xiang Z, Cao X, Zhang W, He Y, Huang H, Lou Y, Zhang Y 2018 Geophys. Res. Lett. 45 10057Google Scholar

    [12]

    Rodger C J, Clilverd M A, McCormick R J 2003 J. Geophys. Res. 108 1462Google Scholar

    [13]

    Clilverd M A, Rodger C J, Nunn D 2004 J. Geophys. Res. A 109 12208Google Scholar

    [14]

    Green A, Li W, Ma Q, Shen X C, Bortnik J, Hospodarsky G B 2020 Geophys. Res. Lett. 47 e2020GL089584

    [15]

    Ma Q, Li W, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B 2016 J. Geophys. Res. Space Phys. 121 274Google Scholar

    [16]

    顾旭东, 何颖, 倪彬彬, 付松, 花漫, 项正 2020 地球 63 2121Google Scholar

    Gu X D, He Y, Ni B B, Fu S, Hua M, Xiang Z 2020 Chin. J. Geophys. 63 2121Google Scholar

    [17]

    Ni B, Yan L, Fu S, Gu X, Cao X, Xiang Z, Zhang Y 2020 Geophys. Res. Lett. 47 e2019GL086487

    [18]

    Ma Q, Mourenas D, Li W, Artemyev A, Thorne R M 2017 Geophys. Res. Lett. 44 6483Google Scholar

    [19]

    Ross J P J, Meredith N P, Glauert S A, Horne R B, Clilverd M A 2019 J. Geophys. Res. Space Phys. 124 5260Google Scholar

    [20]

    Hua M, Li W, Ni B, Ma Q, Green A, Shen X, Claudepierre S G, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G D 2020 Nat. Commun. 11 4847Google Scholar

    [21]

    Chen Y P, Yang G B, Ni B B, Zhao Z Y, Gu X D, Zhou C, Wang F 2016 Adv. Space Res. 57 1871Google Scholar

    [22]

    Chen Y, Ni B, Gu X, Zhao Z, Yang G, Zhou C, Zhang Y 2017 Sci. Chin. Technol. Sci. 60 166Google Scholar

    [23]

    易娟, 顾旭东, 李志鹏, 林仁桐, 蔡毅徽, 陈隆, 倪彬彬, 乐新安 2019 地球 62 3223Google Scholar

    Yi J, Gu X D, Li Z P, Lin R T, Cai Y H, Chen L, Ni B B, Yue X A 2019 Chin. J. Geophys. 62 3223Google Scholar

    [24]

    Yi J, Gu X, Cheng W, Tang X, Chen L, Ni B, Zhou R, Zhao Z, Wang Q, Zhou L 2020 Earth Planet. Phys. 4 238Google Scholar

    [25]

    Zhou R, Gu X, Yang K, Li G, Ni B, Yi J, Chen L, Zhao F, Zhao Z, Wang Q, Zhou L 2020 Earth Planet. Phys. 4 120Google Scholar

    [26]

    Vampola A L, Kuck G A 1978 J. Geophys. Res. 83 2543Google Scholar

    [27]

    Koons H C, Edgar B C, Vampola A L 1981 J. Geophys. Res. 86 640Google Scholar

    [28]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397Google Scholar

    [29]

    Gamble R J, Rodger C J, Clilverd M A, Sauvaud J A, Thomson N R, Stewart S L, McCormick R J, Parrot M, Berthelier J J 2008 J. Geophys. Res. A 113 10211Google Scholar

    [30]

    Graf K L, Inan U S, Piddyachiy D, Kulkarni P, Parrot M, Sauvaud J A 2009 J. Geophys. Res. A 114 07205Google Scholar

    [31]

    Selesnick R S, Albert J M, Starks M J 2013 J. Geophys. Res. Space Phys. 118 628Google Scholar

    [32]

    Agapitov O V, Artemyev A V, Mourenas D, Kasahara Y, Krasnoselskikh V 2014 J. Geophys. Res. Space Phys. 119 2876Google Scholar

    [33]

    Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056Google Scholar

    [34]

    Imhof W L, Reagan J B, Voss H D, Gaines E E, Datlowe D W, Mobilia J, Helliwell R A, Inan U S, Katsufrakis J, Joiner R G 1983 Geophys. Res. Lett. 10 361Google Scholar

    [35]

    Inan U S, Chang H C, Helliwell R A, Imhof W L, Reagan J B, Walt M 1985 J. Geophys. Res. 90 359Google Scholar

    [36]

    王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2011 60 039401Google Scholar

    Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2011 Acta Phys. Sin. 60 039401Google Scholar

    [37]

    Sauvaud J A, Maggiolo R, Jacquey C, Parrot M, Berthelier J J, Gamble R J, Rodger C J 2008 Geophys. Res. Lett. 35 L09101Google Scholar

    [38]

    Clilverd M A, Rodger C J, Gamble R, Meredith N P, Parrot M, Berthelier J J, Thomson N R 2008 J. Geophys. Res. A 113 04211Google Scholar

    [39]

    Kulkarni P, Inan U S, Bell T F, Bortnik J 2008 J. Geophys. Res. A 113 07214Google Scholar

    [40]

    张振霞, 王辰宇, 李强, 吴书贵 2014 63 079401Google Scholar

    Zhang Z X, Wang C Y, Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401Google Scholar

    [41]

    罗旭东, 牛胜利, 左应红 2015 64 069401Google Scholar

    Luo X D, Niu S L, Zuo Y H 2015 Acta Phys. Sin. 64 069401Google Scholar

    [42]

    Meredith N P, Horne R B, Clilverd M A, Ross J P J 2019 J. Geophys. Res. Space Phys. 124 5246Google Scholar

    [43]

    Ozhogin P, Tu J, Song P, Reinisch B W 2012 J. Geophys. Res. A 117 06225Google Scholar

    [44]

    Ni B, Thorne R M, Meredith N P, Shprits Y Y, Horne R B 2011 J. Geophys. Res. A 116 10207Google Scholar

    [45]

    Ni B, Thorne R M, Shprits Y Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106Google Scholar

    [46]

    Ma Q, Artemyev A V, Mourenas D, Li W, Thorne R M, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Wygant J 2017 Geophys. Res. Lett. 44 12057

    [47]

    Xiao F, Su Z, Zheng H, Wang S 2009 J. Geophys. Res. A 114 03201Google Scholar

    [48]

    Xiao F, Shen C, Wang Y, Zheng H, Wang S 2008 J. Geophys. Res. A 113 05203Google Scholar

  • [1] Liu Yang-Xi-Zi, Xiang Zheng, Zhou Chen, Ni Bin-Bin, Dong Jun-Hu, Hu Jing-Le, Wang Jian-Hang, Guo Hao-Zhi. Simulation study on “Wisp” electron spectra generated by NWC very low frequency transmitter signals. Acta Physica Sinica, 2024, 73(20): 209401. doi: 10.7498/aps.73.20240975
    [2] Wang Jing-Zhi, Ma Xin, Xiang Zheng, Gu Xu-Dong, Jiao Lu-Huai, Lei Liang-Jian, Ni Bin-Bin. Multi-dimensional modeling of radiation belt electron pitch-angle diffusion coefficients caused by plasmaspheric hiss. Acta Physica Sinica, 2022, 71(22): 229401. doi: 10.7498/aps.71.20220655
    [3] Yang Ju-Tao, Li Qing-Liang, Wang Jian-Guo, Hao Shu-Ji, Pan Wei-Yan. Theory of very low frequency/extra low frequency radiation by dual-beam beat wave heating ionosphere. Acta Physica Sinica, 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [4] Luo Xu-Dong, Niu Sheng-Li, Zuo Ying-Hong. Diffusing loss effects of radiation belt energetic electrons caused by typical very low frequency electromagnetic wave. Acta Physica Sinica, 2015, 64(6): 069401. doi: 10.7498/aps.64.069401
    [5] Chang Shan-Shan, Ni Bin-Bin, Zhao Zheng-Yu, Wang Feng, Li Jin-Xing, Zhao Jing-Jing, Gu Xu-Dong, Zhou Chen. Test particle simulation of resonant interaction between energetic electrons in the magnetosphere and ELF/VLF waves generated by ionospheric modification. Acta Physica Sinica, 2014, 63(6): 069401. doi: 10.7498/aps.63.069401
    [6] Hao Shu-Ji, Li Qing-Liang, Yang Ju-Tao, Wu Zhen-Sen. Theory of ELF/VLF wave directional radiation by modulated heating of ionosphere. Acta Physica Sinica, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [7] Lü Yao-Ping, Gu Guo-Feng, Lu Hua-Chun, Dai Yu, Tang Guo-Ning. Refraction of reaction-diffusion plane wave for different diffusion coefficients. Acta Physica Sinica, 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [8] Gu Xu-Dong, Zhao Zheng-Yu, Ni Bin-Bin, Wang Xiang, Deng Feng. Quasi-linear diffusion of the radiation belt energetic electrons by ground-based HF heater-induced ELF/VLF emissions. Acta Physica Sinica, 2008, 57(10): 6673-6682. doi: 10.7498/aps.57.6673
    [9] Ni Bin-Bin, Zhao Zheng-Yu, Gu Xu-Dong, Wang Feng. Resonant diffusion of radiation belt energetic electrons by field-aligned propagation whistler-mode chorus waves. Acta Physica Sinica, 2008, 57(12): 7937-7949. doi: 10.7498/aps.57.7937
    [10] Liu Zhi-Ming, Cui Tian, Ma Yan-Ming, Liu Bing-Bing, Zou Guang-Tian. Interactions in Nb2H and its electronic structure. Acta Physica Sinica, 2007, 56(8): 4877-4883. doi: 10.7498/aps.56.4877
    [11] Yan Li-Fen, Wang Hong-Cheng, She Wei-Long. Influence of diffusion on the interaction between photovoltaic spatial solitons. Acta Physica Sinica, 2006, 55(10): 5257-5262. doi: 10.7498/aps.55.5257
    [12] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [13] Wei Qing, Wang Qi, Shi Jie-Long, Chen Yuan-Yuan. . Acta Physica Sinica, 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
    [14] ZHAO DONG-HUAN. ANALYSIS OF EFFECTIVE TIME OF INTERACTION BETWEEN ELECTRON AND RADIATIVE WAVE IN THE FEL. Acta Physica Sinica, 1996, 45(4): 573-579. doi: 10.7498/aps.45.573
    [15] ZHAO DONG-HUAN. INTERACTIONS BETWEEN ELECTRONS WITH WAVES IN THE FEL AND ITS GAIN ANALYSIS. Acta Physica Sinica, 1994, 43(9): 1447-1454. doi: 10.7498/aps.43.1447
    [16] ZHANG XI-QING, ZHAO JIA-LONG, QIN WEI-PING, DOU KAI, HUANG SHI-HUA. MEASUREMENT OF THE AMBIPOLAR DIFFUSION COEFFICIENT USING TIME-DELAYED FOUR-WAVE MIXING WITH INCOHERENT LIGHT. Acta Physica Sinica, 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
    [17] SUN XIN, CHEN HONG-YI, WU CHANG-QIN, FU RONG-TANG, FU ROU-LI. MATRIX ELEMENTS OF ELECTRON INTERACTION IN POLYMER. Acta Physica Sinica, 1991, 40(1): 102-108. doi: 10.7498/aps.40.102
    [18] He Xian-tu. NON-LINEAR EFFECT ON THE LARGE AMPLITUDE WAVES INTERACTION WITH PARTICLES OF LOW FREQUENCY OSCILLATION IN PLASMA. Acta Physica Sinica, 1982, 31(10): 1317-1336. doi: 10.7498/aps.31.1317
    [19] PAN WEI-YAN. INFLUENCE OF EARTH'S CURVATURE ON CALCULATION OF IONOSPHERE REFLECTION AT LF AND VLF BANDS. Acta Physica Sinica, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [20] ВЗАИМОДЕЙСТВИЕ s-ЭЛЕКТРОНОВ СО СПИНОВЫМИ ВОЛНАМИ В ФЕРРОМАГНЕТИКЕ. Acta Physica Sinica, 1964, 20(3): 193-206. doi: 10.7498/aps.20.193
Metrics
  • Abstract views:  4529
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2020
  • Accepted Date:  27 February 2021
  • Available Online:  09 July 2021
  • Published Online:  20 July 2021

/

返回文章
返回
Baidu
map