搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矢量水听器的深海直达波区域声传播特性及其应用

孙梅 周士弘 李整林

引用本文:
Citation:

基于矢量水听器的深海直达波区域声传播特性及其应用

孙梅, 周士弘, 李整林

Analysis of sound propagation in the direct-arrival zone in deep water with a vector sensor and its application

Sun Mei, Zhou Shi-Hong, Li Zheng-Lin
PDF
导出引用
  • 对于深海近水面声源产生的声场, 处于较大深度处的接收器在一定水平距离范围内能接收到直达波. 2014年在某深海海域进行的水声考察实验中, 应用深度为140 m的拖曳声源发射实验信号, 布放在水下3146 m深处的矢量水听器成功地接收到了直达波信号. 本文应用射线理论, 分析了深海直达波区域声场的传播特性, 得出了水平振速与垂直振速的传播损失与声线到达接收点处的掠射角以及收发水平距离之间的关系. 在以上分析的基础上, 提出了一种利用水平振速与垂直振速的能量差估计声源距离的方法, 并结合2014年实验数据对实验中两条航线上8 km范围内的目标声源进行了测距, 测距结果与目标的GPS数据符合得较好.
    The receiver at larger depth can receive the direct-arrival signal from a shallow source in a certain range in deep water. During a deep-water experiment conducted in 2014, a vector sensor located at a depth of 3146 m received the direct-arrival signals from the transducer towed at about 140 m depth by the source ship. In this paper, the propagation properties of the sound field in the direct-arrival zone in deep water are studied based on the ray theory and subsequently a source-range-estimation method is proposed. In the direct-arrival zone, the arrival angle is one of the most important properties of sound field, and the sound field is mainly composed of the contributions of a direct ray and a surface-reflected ray. The theoretical analysis and simulation results show that the amplitudes of horizontal particle velocity and vertical particle velocity are related to the mean arrival angle of the direct ray and the surface-reflected ray, and the larger the arrival angle, the greater the vertical particle velocity is, but the weaker the horizontal particle velocity is. Furthermore, the energy difference between horizontal particle velocity and vertical particle velocity can be approximately expressed by a monotonic function of the arrival angle, which varies fast with the horizontal distance between source and receiver. This property is applied to the estimation of source range. The analysis of the experimental data shows that the estimated source ranges are consistent with the GPS ranges within the range of 8 km, and the mean relative error of source range estimation is within 10%.
      通信作者: 孙梅, sunmei@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11434012, 41561144006)、山东省高等学校科技计划项目(批准号: J12LJ56)和泰山学院科研启动基金(批准号: Y-01-2013009)资助的课题.
      Corresponding author: Sun Mei, sunmei@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012, 41561144006), the Scientific Research Foundation of the Higher Education Institutions of Shandong Province, China (Grant No. J12LJ56), and the Scientific Research Foundation of Taishan University (Grant No. Y-01-2013009).
    [1]

    Li F H, Sun M, Zhang R H 2009 Proceedings of the Second International Shallow-Water Conference Shanghai, China, September 16-20, 2009 p383

    [2]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]

    [3]

    Sun G Q, Yang D S, Zhang L Y, Shi S G 2003 Acta Acust. 28 66 (in Chinese) [孙贵青, 杨德森, 张揽月, 时胜国 2003 声学学报 28 66]

    [4]

    Li F H, Zhu L M, Chen D S 2013 Sci. Sin.: Phys. Mech. Astron. 43 s99 (in Chinese) [李风华, 朱良明, 陈德胜 2013 中国科学: 物理学 力学 天文学 43 s99]

    [5]

    Sun M, Li F H, Zhang R H 2011 Acta Acust. 36 215 (in Chinese) [孙梅, 李风华, 张仁和 2011 声学学报 36 215]

    [6]

    Peng H S, Li F H 2007 Chin. Phys. Lett. 24 1977

    [7]

    Li F H, Sun M, Zhang R H 2010 J. Harbin Eng. Univ. 31 895 (in Chinese) [李风华, 孙梅, 张仁和 2010 哈尔滨工程大学学报 31 895]

    [8]

    Santos P, Rodrguez O C, Felisberto P, Jesus S M 2010 J. Acoust. Soc. Am. 128 2652

    [9]

    Hui J Y, Liu H, Yu H B, Fan M Y 2000 Acta Acust. 25 303 (in Chinese) [惠俊英, 刘宏, 余华兵, 范敏毅 2000 声学学报 25 303]

    [10]

    Wong K T, Zoltowski M D 1999 IEEE Trans. Signal Process. 47 3250

    [11]

    Wong K T, Zoltowski M D 2000 IEEE J. Oceanic Eng. 25 262

    [12]

    Hawkes M, Nehorai A 2003 IEEE Trans. Signal Process. 51 1479

    [13]

    Felisberto P, Rodriguez O, Santos P, Ey E, Jesus S M 2013 Sensors 13 8856

    [14]

    Zhu L M, Li F H, Sun M, Chen D S 2015 Acta Phys. Sin. 64 154303 (in Chinese) [朱良明, 李风华, 孙梅, 陈德胜 2015 64 154303]

    [15]

    Zhong X, Premkumar A B, Wang H 2014 IEEE Sensors J. 14 2502

    [16]

    Liu B S, Lei J Y 2011 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) p91 (in Chinese) [刘伯胜, 雷家煜 2011 水声学原理(哈尔滨: 哈尔滨工程大学出版社) 第91页]

    [17]

    Michael D C 1993 J. Acoust. Soc. Am. 93 1736

    [18]

    Chen L R, Peng Z H, Wang G X 2012 Proceedings of the 3rd International Conference on Ocean Acoustics Beijing China, May 21-25, 2012 p611

  • [1]

    Li F H, Sun M, Zhang R H 2009 Proceedings of the Second International Shallow-Water Conference Shanghai, China, September 16-20, 2009 p383

    [2]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]

    [3]

    Sun G Q, Yang D S, Zhang L Y, Shi S G 2003 Acta Acust. 28 66 (in Chinese) [孙贵青, 杨德森, 张揽月, 时胜国 2003 声学学报 28 66]

    [4]

    Li F H, Zhu L M, Chen D S 2013 Sci. Sin.: Phys. Mech. Astron. 43 s99 (in Chinese) [李风华, 朱良明, 陈德胜 2013 中国科学: 物理学 力学 天文学 43 s99]

    [5]

    Sun M, Li F H, Zhang R H 2011 Acta Acust. 36 215 (in Chinese) [孙梅, 李风华, 张仁和 2011 声学学报 36 215]

    [6]

    Peng H S, Li F H 2007 Chin. Phys. Lett. 24 1977

    [7]

    Li F H, Sun M, Zhang R H 2010 J. Harbin Eng. Univ. 31 895 (in Chinese) [李风华, 孙梅, 张仁和 2010 哈尔滨工程大学学报 31 895]

    [8]

    Santos P, Rodrguez O C, Felisberto P, Jesus S M 2010 J. Acoust. Soc. Am. 128 2652

    [9]

    Hui J Y, Liu H, Yu H B, Fan M Y 2000 Acta Acust. 25 303 (in Chinese) [惠俊英, 刘宏, 余华兵, 范敏毅 2000 声学学报 25 303]

    [10]

    Wong K T, Zoltowski M D 1999 IEEE Trans. Signal Process. 47 3250

    [11]

    Wong K T, Zoltowski M D 2000 IEEE J. Oceanic Eng. 25 262

    [12]

    Hawkes M, Nehorai A 2003 IEEE Trans. Signal Process. 51 1479

    [13]

    Felisberto P, Rodriguez O, Santos P, Ey E, Jesus S M 2013 Sensors 13 8856

    [14]

    Zhu L M, Li F H, Sun M, Chen D S 2015 Acta Phys. Sin. 64 154303 (in Chinese) [朱良明, 李风华, 孙梅, 陈德胜 2015 64 154303]

    [15]

    Zhong X, Premkumar A B, Wang H 2014 IEEE Sensors J. 14 2502

    [16]

    Liu B S, Lei J Y 2011 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) p91 (in Chinese) [刘伯胜, 雷家煜 2011 水声学原理(哈尔滨: 哈尔滨工程大学出版社) 第91页]

    [17]

    Michael D C 1993 J. Acoust. Soc. Am. 93 1736

    [18]

    Chen L R, Peng Z H, Wang G X 2012 Proceedings of the 3rd International Conference on Ocean Acoustics Beijing China, May 21-25, 2012 p611

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响.  , 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] 安秉文, 陈家熠, 李斐然, 李子琪, 吴先梅. π相移光纤光栅水听器的超声波传感指向特性.  , 2023, 72(6): 064303. doi: 10.7498/aps.72.20222154
    [3] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响.  , 2023, 72(5): 055202. doi: 10.7498/aps.72.20222048
    [4] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性.  , 2022, 0(0): . doi: 10.7498/aps.7120220566
    [5] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性.  , 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [6] 刘琳, 张秀梅, 王秀明. 孔隙内填充单一固体的固-固孔隙介质中的声波传播.  , 2022, 71(9): 099101. doi: 10.7498/aps.71.20212012
    [7] 魏万里, 翁春生, 武郁文, 郑权. 涡轮导向器对旋转爆轰波传播特性影响的实验研究.  , 2020, 69(6): 064703. doi: 10.7498/aps.69.20191547
    [8] 王任, 刘胜, 张默然, 王秉中. 电磁飞环的缓扩散传播特性.  , 2020, 69(16): 164101. doi: 10.7498/aps.69.20200271
    [9] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性.  , 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [10] 马琦, 胡文祥, 徐琰锋, 王浩. 流体-镀层基底界面波的传播特性.  , 2017, 66(8): 084302. doi: 10.7498/aps.66.084302
    [11] 孙梅, 周士弘. 大深度接收时深海直达波区的复声强及声线到达角估计.  , 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [12] 朱良明, 李风华, 孙梅, 陈德胜. 基于频带分解和距离加权的单矢量水听器浅海被动测距方法研究.  , 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [13] 时胜国, 于树华, 时洁, 马根卯. 矢量拖线阵水听器流噪声响应特性.  , 2015, 64(15): 154306. doi: 10.7498/aps.64.154306
    [14] 王燕, 邹男, 付进, 梁国龙. 基于倒谱分析的单水听器目标运动参数估计.  , 2014, 63(3): 034302. doi: 10.7498/aps.63.034302
    [15] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究.  , 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [16] 李树彬, 吴建军, 高自友, 林勇, 傅白白. 基于复杂网络的交通拥堵与传播动力学分析.  , 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [17] 王泽锋, 胡永明, 孟洲, 罗洪, 倪明. 四阶声低通滤波光纤水听器的声压灵敏度频响特性.  , 2009, 58(10): 7034-7043. doi: 10.7498/aps.58.7034
    [18] 韩庆邦, 钱梦騄, 朱昌平. 激光超声方法研究固-固界面波传播特性.  , 2007, 56(1): 313-320. doi: 10.7498/aps.56.313
    [19] 王奇, 鲍家善, 蔡英时, A. D. BOARDMAN. 非线性静磁表面波的传播特性.  , 1993, 42(12): 2005-2013. doi: 10.7498/aps.42.2005
    [20] 章德. 用倒相换能器抑制声表面波谐振滤波器的直达讯号.  , 1978, 27(3): 349-352. doi: 10.7498/aps.27.349
计量
  • 文章访问数:  7363
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-09
  • 修回日期:  2016-01-18
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map