-
Most studies on quantum effects in the process of excitation energy transfer in photosynthesis system are based on the single-excitation initial state hypothesis, which can well describe the initial state of some photosynthesis systems that people are concerned about. But for natural and artificial photosynthesis systems that do not meet the above hypothesis, the excitation process has a non-negligible impact on the system dynamics. Based on a multi-pigments model excited by Gaussian pulse, the effects of the excitation pulse width and the excitation interval on system dynamics and excitation energy transfer efficiency are studied. First, the kinetic equations for the overall evolution of the donor system and the acceptor system that can theoretically contain any number of pigments are derived. Afterwards, the relationship between the excitation energy transfer efficiency and the related parameters of the system, as well as the optimal range of the corresponding parameters are demonstrated by numerical simulation. It is found that under the condition of donor pigments being excited by a single Gaussian pulse, there exists optimal pulse width, and the optimal range of the pigment molecule numbers, the coupling strength as well as the dephasing rate can be modulated by the pulse width. The mechanism of the above modulation is also analyzed and presented. Under the condition of donor pigments being excited by two Gaussian pulses sequentially, there exists an optimal combination of pulse width and pulse interval. The kinetic equations obtained in this paper can be extended to other forms of excitation pulses. The numerical results and the related optimal design principles obtained have reference significance for the optimal design of artificial photosynthesis systems under different light conditions.
[1] Cardona T 2018 Heliyon 4 e00548
Google Scholar
[2] Van A H, Valkunas L, Van G R 2000 Photosynthetic Excitons (Singapore: World Scientific) pp1-45, 56
[3] May V, Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (Vol. 2) (Weinheim: Wiley-vch Verlag GmbH & Co. KGaA) pp1-7
[4] Ishizaki A, Calhoun T R, Schlau-Cohen G S, Fleming G R 2010 Phys. Chem. Chem. Phys. 12 7319
Google Scholar
[5] Scholes G D, Fleming G R, Olaya-Castro A, Van G R 2011 Nat. Chem. 3 763
Google Scholar
[6] Olaya-Castro A, Scholes G D 2011 Int. Rev. Phys. Chem. 30 49
Google Scholar
[7] Collini E 2013 Chem. Soc. Rev. 42 4932
Google Scholar
[8] Levi F, Mostarda S, Rao F, Mintert F 2015 Rep. Prog. Phys. 78 082001
Google Scholar
[9] Olaya-Castro A, Lee C F, Olsen F F, Johnson N F 2008 Phys. Rev. B 78 085115
Google Scholar
[10] Fassioli F, Nazir A, Olaya-Castro A 2010 J. Phys. Chem. Lett. 1 2139
Google Scholar
[11] Zhang Y P, Li H R, Fang A P, Chen H, Li F L 2013 Chin. Phys. B 22 057104
Google Scholar
[12] Plenio M B, Huelga S F 2008 New J. Phys. 10 113019
Google Scholar
[13] Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106
Google Scholar
[14] Chen H, Wang X, Han C M, Li H R 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075501
Google Scholar
[15] Chan H C, Gamel O E, Fleming G R, Whaley K B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 054002
Google Scholar
[16] Barbatti M 2020 J. Chem. Theory Comput. 16 4849
Google Scholar
[17] Li H R, Zhang P, Liu Y J, Li F L, Zhu S Y 2013 Phys. Rev. A 87 053831
Google Scholar
[18] Zong X L, Song W, Zhou J, Yang M, Yu L B, Cao Z L 2018 Quantum Inf. Process. 17 158
[19] Golubev N V, Kuleff A I 2014 Phys. Rev. A 90 035401
Google Scholar
[20] Medina I, Semiao F L 2019 Phys. Rev. A 100 012103
Google Scholar
[21] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp248-268
[22] Yang S, Xu D Z, Song Z, Sun C P 2010 J. Chem. Phys. 132 234501
Google Scholar
[23] Caruso F, Chin A W, Datta A, Huelga S F, Plenio M B 2009 J. Chem. Phys. 131 105106
Google Scholar
-
图 2 脉冲宽度
τp 不同时激发能传输效率η 与供体数目m 和受体数目n 之间的关系 (a)τp=0.01V−10 ; (b)τp=0.05V−10 ; (c)τp=0.1V−10 ; (d)τp=0.15V−10 Figure 2. The relationship between the efficiency of the excitation energy transfer
η and the number of donors (m ) and acceptors (n ) with different pulse widthτp : (a)τp=0.01V−10 ; (b)τp=0.05V−10 ; (c)τp=0.1V−10 ; (d)τp=0.15V−10 .图 3 脉冲宽度
τp 不同时激发能传输效率η 与供体色素分子间耦合强度J0 以及受体色素分子间耦合强度g0 之间的关系 (a)τp= 0.01V−10 ; (b)τp=0.05V−10 ; (c)τp=0.1V−10 ; (d)τp=0.15V−10 Figure 3. The relationship between the efficiency of the excitation energy transfer
η and the coupling strength of the donor pigmentsJ0 as well as the coupling strength of the acceptor pigmentsg0 with different pulse widthτp : (a)τp=0.01V−10 ; (b)τp= 0.05V−10 ; (c)τp=0.1V−10 ; (d)τp=0.15V−10 图 4 脉冲宽度
τp 及供体数目m 和受体数目n 不同时, 激发能传输效率η 与供体色素分子间耦合强度J0 和受体色素分子间耦合强度g0 之间的关系 (a)τp=0.01V−10,m=8,n=3 ; (b)τp=0.05V−10,m=9,n=3 ; (c)τp=0.1V−10,m=16,n=7 ; (d)τp=0.15V−10,m=16,n=12 Figure 4. The relationship between the efficiency of the excitation energy transfer
η and the coupling strength of the donor pigmentsJ0 as well as the coupling strength of the acceptor pigmentsg0 with different pulse widthτp , donor pigments numberm and acceptor pigments numbern : (a) Pulse widthτp=0.01V−10,m=8,n=3 ; (b) pulse widthτp=0.05V−10,m=9,n=3 ; (c) pulse widthτp=0.1V−10,m=16,n=7 ; (d) pulse widthτp=0.15V−10,m=16,n=12 图 6 脉冲宽度
τp 不同时激发能传输效率η 与供体色素分子的退相位速率Γ′ 以及受体分子的退相位速率κ′ 之间的关系 (a)τp= 0.01V−10 ; (b)τp=0.05V−10 ; (c)τp=0.1V−10 ; (d)τp=0.15V−10 Figure 6. The relationship between the efficiency of the excitation energy transfer
η and the dephasing rate of the donor pigmentsΓ′ as well as the dephasing rate of the acceptor pigmentsκ′ with different pulse widthτp : (a)τp=0.01V−10 ; (b)τp=0.05V−10 ; (c)τp=0.1V−10 ; (d)τp=0.15V−10 图 9 供体色素分子间耦合强度
J0 以及受体色素分子间耦合强度g0 不同时激发能传输效率η 与脉冲间隔T 以及脉冲宽度τp 之间的关系 (a)J0=0.1V0,g0=0.5V0 ; (b)J0=0.1V0,g0=1.0V0 ; (c)J0=0.2V0,g0=0.5V0 ; (d)J0=0.2V0,g0=1.0V0 Figure 9. The relationship between the efficiency of the excitation energy transfer
η and the pulse intervalT as well as the pulse widthτp with different coupling strength of the donor pigmentsJ0 and coupling strength of the acceptor pigmentsg0 : (a)J0= 0.1V0,g0=0.5V0 ; (b)J0=0.1V0,g0=1.0V0 ; (c)J0=0.2V0,g0=0.5V0 ; (d)J0=0.2V0,g0=1.0V0 图 10 供体色素分子数目
m 及受体色素分子数目n 不同时激发能传输效率η 与脉冲间隔T 以及脉冲宽度τp 之间的关系 (a) 色素分子数目m=8,n=3 ; (b)色素分子数目m=9,n=3 ; (c)色素分子数目m=16,n=7 ; (d)色素分子数目m=16, n=12 Figure 10. The relationship between the efficiency of the excitation energy transfer
η and the pulse intervalT as well as the pulse widthτp with different donor pigments numberm and acceptor pigments numbern : (a)m=8,n=3 ; (b)m=9,n=3 ; (c)m= 16,n=7 ; (d)m=16,n=12 -
[1] Cardona T 2018 Heliyon 4 e00548
Google Scholar
[2] Van A H, Valkunas L, Van G R 2000 Photosynthetic Excitons (Singapore: World Scientific) pp1-45, 56
[3] May V, Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (Vol. 2) (Weinheim: Wiley-vch Verlag GmbH & Co. KGaA) pp1-7
[4] Ishizaki A, Calhoun T R, Schlau-Cohen G S, Fleming G R 2010 Phys. Chem. Chem. Phys. 12 7319
Google Scholar
[5] Scholes G D, Fleming G R, Olaya-Castro A, Van G R 2011 Nat. Chem. 3 763
Google Scholar
[6] Olaya-Castro A, Scholes G D 2011 Int. Rev. Phys. Chem. 30 49
Google Scholar
[7] Collini E 2013 Chem. Soc. Rev. 42 4932
Google Scholar
[8] Levi F, Mostarda S, Rao F, Mintert F 2015 Rep. Prog. Phys. 78 082001
Google Scholar
[9] Olaya-Castro A, Lee C F, Olsen F F, Johnson N F 2008 Phys. Rev. B 78 085115
Google Scholar
[10] Fassioli F, Nazir A, Olaya-Castro A 2010 J. Phys. Chem. Lett. 1 2139
Google Scholar
[11] Zhang Y P, Li H R, Fang A P, Chen H, Li F L 2013 Chin. Phys. B 22 057104
Google Scholar
[12] Plenio M B, Huelga S F 2008 New J. Phys. 10 113019
Google Scholar
[13] Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106
Google Scholar
[14] Chen H, Wang X, Han C M, Li H R 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075501
Google Scholar
[15] Chan H C, Gamel O E, Fleming G R, Whaley K B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 054002
Google Scholar
[16] Barbatti M 2020 J. Chem. Theory Comput. 16 4849
Google Scholar
[17] Li H R, Zhang P, Liu Y J, Li F L, Zhu S Y 2013 Phys. Rev. A 87 053831
Google Scholar
[18] Zong X L, Song W, Zhou J, Yang M, Yu L B, Cao Z L 2018 Quantum Inf. Process. 17 158
[19] Golubev N V, Kuleff A I 2014 Phys. Rev. A 90 035401
Google Scholar
[20] Medina I, Semiao F L 2019 Phys. Rev. A 100 012103
Google Scholar
[21] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp248-268
[22] Yang S, Xu D Z, Song Z, Sun C P 2010 J. Chem. Phys. 132 234501
Google Scholar
[23] Caruso F, Chin A W, Datta A, Huelga S F, Plenio M B 2009 J. Chem. Phys. 131 105106
Google Scholar
Catalog
Metrics
- Abstract views: 4996
- PDF Downloads: 65