-
本文基于Lee-Low-Pines幺正变换法,采用Tokuda 改进的线性组合算符法研究了Rashba自旋-轨道相互作用效应下量子盘中强耦合磁极化子的性质. 结果表明,磁极化子的相互作用能Eint的取值随量子盘横向受限强度0、外磁场的回旋频率c、电子-LO声子耦合强度和量子盘厚度L的变化均与磁极化子的状态性质密切相关;磁极化子的平均声子数N随c,0和的增加而增大,随L的增加而振荡减小;在Rashba自旋-轨道相互作用效应影响下磁极化子的有效质量将劈裂为m+*,m-*两种,它们随c,0和的增加而增大,随L的增加而振荡减小;在研究量子盘中磁极化子问题时,电子-LO声子耦合和Rashba自旋-轨道相互作用效应的影响不可忽略,但Rashba 自旋-轨道相互作用和极化子效应对磁极化子的影响只有在电子运动的速率较慢时显著.
-
关键词:
- 量子盘 /
- Rashba自旋-轨道相互作用 /
- 磁极化子 /
- 相互作用能
On the basis of Lee-Low-Pines unitary transformation, the properties of strong-coupling magnetopolarons in quantum disks (QDs) induced by the Rashba spin-orbit interaction are studied using the Tokuda improved linearly combined operator method. Results show that the state properties of magnetopolarons are closely linked with the sign of the interaction energy Eint, and the Eint of magnetopolarons changes with the transverse confinement strength 0, the cyclotron frequency of the external magnetic field c, the electron-LO phonon coupling strength , and the thickness L of QDs. The average number N of phonons increases with increasing c, 0 and , but the oscillation decreases with increasing thickness L of QDs. The effective mass m0* of magnetopolarons splits into two (m+*, m-*), induced by the Rashba spin-orbit interaction, and the values of them increase with increasing c, 0 and , but the oscillation decreases with increasing thickness L of QDs. For the ground state of magnetopolarons in QDs, the electron-LO phonon interaction plays a significant role, meanwhile, the Rashba spin-orbit coupling effect cannot be ignored. Only for the lower volocity of the electrons, can the polaron effect and the Rashba spin-orbit interaction effect on the magnetopolaron be obvious.-
Keywords:
- quantum disk /
- Rashba spin-orbit interaction /
- magnetopolaron /
- interaction energy
[1] Dou X M, Chang X Y, Sun B Q 2009 Appl. Phys. Lett. 95 221903
[2] [3] Yu Z, Guo Y, Zheng J, Chi F 2013 Chin. Phys. B 22 117303
[4] [5] Shen M, Bai Y K, An X T, Liu J J 2013 Chin. Phys. B 22 047101
[6] Huangfu Y F, Yan Z W 2008 Physica E 40 2982
[7] [8] Xiao W, Xiao J L 2007 Int. J. Mod. Phys. B 21 2007
[9] [10] Tang H Z, Zhai L X, Liu J J 2012 Chin. Phys. B 21 120303
[11] [12] Yang F, Zheng R. S 2007 Solid State Commun. 141 555
[13] [14] Li A X, Duan S Q 2012 Chin. Phys. B 21 117201
[15] [16] Rashba E I 2000 Phys. Rev. B 62 16267
[17] [18] Dresselhaus G 1955 Phys. Rev. 100 580
[19] [20] [21] Governale M 2002 Phys. Rev. Lett. 89 206802
[22] [23] Bandyopadhyay S 2000 Phys. Rev. B 61 13813
[24] Tsitsishvili E, Lozano G S, Gogolin A O 2004 Phys. Rev. B 70 115316
[25] [26] Tapash Chakraborty, Pekka Pietilainen 2005 Phys. Rev. B 71 113305
[27] [28] Fai L C, Teboul V, Monteil A 2005 Condensed Matter Physics 8 639
[29] [30] Liu J Xiao J L, Huo S F, Chen Z Y 2007 Commun. Theor. Phys. 48 930
[31] [32] Li Z X, Xiao J L, Wang H Y 2010 Modern Physics Letters B 24 2423
[33] [34] [35] Li Z X, Xiao J, Liu A H 2011 International Journal of Nanoscience 10 501
[36] Wang Q W, Hong L 2012 Acta Phys. Sin. 61 017107 (in Chinese)[王启文, 红兰 2012 61 017107]
[37] [38] Peeters F M, Schweigert V A 1996 Phys. Rev. B 53 1468
[39] [40] Price R, Zhu X, Sarma S D 1995 Phys. Rev. B 51 2017
[41] [42] [43] Lommer G, Malcher F, Rossler U 1988 Phys. Rev. Lett. 60 728
[44] [45] Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310
[46] Voskoboynikov O, Lee C P, Tretyak O 2001 Phys. Rev. B 63 165306
[47] [48] Tokuda N 1980 J. Phys. C: Solid State Phys. 13 L851
[49] [50] [51] Lee T D, Low F M, Pines D 1953 Phys. Rev. 90 297
[52] Chakraborty T, Pietilinen P 2005 Phys. Rev. B 71 113305
[53] -
[1] Dou X M, Chang X Y, Sun B Q 2009 Appl. Phys. Lett. 95 221903
[2] [3] Yu Z, Guo Y, Zheng J, Chi F 2013 Chin. Phys. B 22 117303
[4] [5] Shen M, Bai Y K, An X T, Liu J J 2013 Chin. Phys. B 22 047101
[6] Huangfu Y F, Yan Z W 2008 Physica E 40 2982
[7] [8] Xiao W, Xiao J L 2007 Int. J. Mod. Phys. B 21 2007
[9] [10] Tang H Z, Zhai L X, Liu J J 2012 Chin. Phys. B 21 120303
[11] [12] Yang F, Zheng R. S 2007 Solid State Commun. 141 555
[13] [14] Li A X, Duan S Q 2012 Chin. Phys. B 21 117201
[15] [16] Rashba E I 2000 Phys. Rev. B 62 16267
[17] [18] Dresselhaus G 1955 Phys. Rev. 100 580
[19] [20] [21] Governale M 2002 Phys. Rev. Lett. 89 206802
[22] [23] Bandyopadhyay S 2000 Phys. Rev. B 61 13813
[24] Tsitsishvili E, Lozano G S, Gogolin A O 2004 Phys. Rev. B 70 115316
[25] [26] Tapash Chakraborty, Pekka Pietilainen 2005 Phys. Rev. B 71 113305
[27] [28] Fai L C, Teboul V, Monteil A 2005 Condensed Matter Physics 8 639
[29] [30] Liu J Xiao J L, Huo S F, Chen Z Y 2007 Commun. Theor. Phys. 48 930
[31] [32] Li Z X, Xiao J L, Wang H Y 2010 Modern Physics Letters B 24 2423
[33] [34] [35] Li Z X, Xiao J, Liu A H 2011 International Journal of Nanoscience 10 501
[36] Wang Q W, Hong L 2012 Acta Phys. Sin. 61 017107 (in Chinese)[王启文, 红兰 2012 61 017107]
[37] [38] Peeters F M, Schweigert V A 1996 Phys. Rev. B 53 1468
[39] [40] Price R, Zhu X, Sarma S D 1995 Phys. Rev. B 51 2017
[41] [42] [43] Lommer G, Malcher F, Rossler U 1988 Phys. Rev. Lett. 60 728
[44] [45] Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310
[46] Voskoboynikov O, Lee C P, Tretyak O 2001 Phys. Rev. B 63 165306
[47] [48] Tokuda N 1980 J. Phys. C: Solid State Phys. 13 L851
[49] [50] [51] Lee T D, Low F M, Pines D 1953 Phys. Rev. 90 297
[52] Chakraborty T, Pietilinen P 2005 Phys. Rev. B 71 113305
[53]
计量
- 文章访问数: 5656
- PDF下载量: 661
- 被引次数: 0