搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rashba自旋-轨道相互作用影响下量子盘中强耦合磁极化子性质的研究

白旭芳 乌云其木格 辛伟 额尔敦朝鲁

引用本文:
Citation:

Rashba自旋-轨道相互作用影响下量子盘中强耦合磁极化子性质的研究

白旭芳, 乌云其木格, 辛伟, 额尔敦朝鲁

Study of the properties of strong-coupling magnetopolaron in quantum disks induced by the Rashba spin-orbit interaction

Bai Xu-Fang, Wuyunqimuge, Xin Wei, Eerdunchaolu
PDF
导出引用
  • 本文基于Lee-Low-Pines幺正变换法,采用Tokuda 改进的线性组合算符法研究了Rashba自旋-轨道相互作用效应下量子盘中强耦合磁极化子的性质. 结果表明,磁极化子的相互作用能Eint的取值随量子盘横向受限强度0、外磁场的回旋频率c、电子-LO声子耦合强度和量子盘厚度L的变化均与磁极化子的状态性质密切相关;磁极化子的平均声子数N随c,0和的增加而增大,随L的增加而振荡减小;在Rashba自旋-轨道相互作用效应影响下磁极化子的有效质量将劈裂为m+*,m-*两种,它们随c,0和的增加而增大,随L的增加而振荡减小;在研究量子盘中磁极化子问题时,电子-LO声子耦合和Rashba自旋-轨道相互作用效应的影响不可忽略,但Rashba 自旋-轨道相互作用和极化子效应对磁极化子的影响只有在电子运动的速率较慢时显著.
    On the basis of Lee-Low-Pines unitary transformation, the properties of strong-coupling magnetopolarons in quantum disks (QDs) induced by the Rashba spin-orbit interaction are studied using the Tokuda improved linearly combined operator method. Results show that the state properties of magnetopolarons are closely linked with the sign of the interaction energy Eint, and the Eint of magnetopolarons changes with the transverse confinement strength 0, the cyclotron frequency of the external magnetic field c, the electron-LO phonon coupling strength , and the thickness L of QDs. The average number N of phonons increases with increasing c, 0 and , but the oscillation decreases with increasing thickness L of QDs. The effective mass m0* of magnetopolarons splits into two (m+*, m-*), induced by the Rashba spin-orbit interaction, and the values of them increase with increasing c, 0 and , but the oscillation decreases with increasing thickness L of QDs. For the ground state of magnetopolarons in QDs, the electron-LO phonon interaction plays a significant role, meanwhile, the Rashba spin-orbit coupling effect cannot be ignored. Only for the lower volocity of the electrons, can the polaron effect and the Rashba spin-orbit interaction effect on the magnetopolaron be obvious.
    • 基金项目: 河北省自然科学基金(批准号:E2013407119)、河北省高等院校科学技术研究重点项目(批准号:ZD20131008)和内蒙古自治区高等学校科学研究项目(批准号:NJZY14189)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Hebei Provice, China (Grand No. E2013407119), the Items of Institution of higher Education Scientific Research of Hebei Provice, China (Grand No. ZD20131008), and the Items of Institution of High Education Scientific Research of Inner Mongolia, China (Grand No. NJZY14189).
    [1]

    Dou X M, Chang X Y, Sun B Q 2009 Appl. Phys. Lett. 95 221903

    [2]
    [3]

    Yu Z, Guo Y, Zheng J, Chi F 2013 Chin. Phys. B 22 117303

    [4]
    [5]

    Shen M, Bai Y K, An X T, Liu J J 2013 Chin. Phys. B 22 047101

    [6]

    Huangfu Y F, Yan Z W 2008 Physica E 40 2982

    [7]
    [8]

    Xiao W, Xiao J L 2007 Int. J. Mod. Phys. B 21 2007

    [9]
    [10]

    Tang H Z, Zhai L X, Liu J J 2012 Chin. Phys. B 21 120303

    [11]
    [12]

    Yang F, Zheng R. S 2007 Solid State Commun. 141 555

    [13]
    [14]

    Li A X, Duan S Q 2012 Chin. Phys. B 21 117201

    [15]
    [16]

    Rashba E I 2000 Phys. Rev. B 62 16267

    [17]
    [18]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [19]
    [20]
    [21]

    Governale M 2002 Phys. Rev. Lett. 89 206802

    [22]
    [23]

    Bandyopadhyay S 2000 Phys. Rev. B 61 13813

    [24]

    Tsitsishvili E, Lozano G S, Gogolin A O 2004 Phys. Rev. B 70 115316

    [25]
    [26]

    Tapash Chakraborty, Pekka Pietilainen 2005 Phys. Rev. B 71 113305

    [27]
    [28]

    Fai L C, Teboul V, Monteil A 2005 Condensed Matter Physics 8 639

    [29]
    [30]

    Liu J Xiao J L, Huo S F, Chen Z Y 2007 Commun. Theor. Phys. 48 930

    [31]
    [32]

    Li Z X, Xiao J L, Wang H Y 2010 Modern Physics Letters B 24 2423

    [33]
    [34]
    [35]

    Li Z X, Xiao J, Liu A H 2011 International Journal of Nanoscience 10 501

    [36]

    Wang Q W, Hong L 2012 Acta Phys. Sin. 61 017107 (in Chinese)[王启文, 红兰 2012 61 017107]

    [37]
    [38]

    Peeters F M, Schweigert V A 1996 Phys. Rev. B 53 1468

    [39]
    [40]

    Price R, Zhu X, Sarma S D 1995 Phys. Rev. B 51 2017

    [41]
    [42]
    [43]

    Lommer G, Malcher F, Rossler U 1988 Phys. Rev. Lett. 60 728

    [44]
    [45]

    Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310

    [46]

    Voskoboynikov O, Lee C P, Tretyak O 2001 Phys. Rev. B 63 165306

    [47]
    [48]

    Tokuda N 1980 J. Phys. C: Solid State Phys. 13 L851

    [49]
    [50]
    [51]

    Lee T D, Low F M, Pines D 1953 Phys. Rev. 90 297

    [52]

    Chakraborty T, Pietilinen P 2005 Phys. Rev. B 71 113305

    [53]
  • [1]

    Dou X M, Chang X Y, Sun B Q 2009 Appl. Phys. Lett. 95 221903

    [2]
    [3]

    Yu Z, Guo Y, Zheng J, Chi F 2013 Chin. Phys. B 22 117303

    [4]
    [5]

    Shen M, Bai Y K, An X T, Liu J J 2013 Chin. Phys. B 22 047101

    [6]

    Huangfu Y F, Yan Z W 2008 Physica E 40 2982

    [7]
    [8]

    Xiao W, Xiao J L 2007 Int. J. Mod. Phys. B 21 2007

    [9]
    [10]

    Tang H Z, Zhai L X, Liu J J 2012 Chin. Phys. B 21 120303

    [11]
    [12]

    Yang F, Zheng R. S 2007 Solid State Commun. 141 555

    [13]
    [14]

    Li A X, Duan S Q 2012 Chin. Phys. B 21 117201

    [15]
    [16]

    Rashba E I 2000 Phys. Rev. B 62 16267

    [17]
    [18]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [19]
    [20]
    [21]

    Governale M 2002 Phys. Rev. Lett. 89 206802

    [22]
    [23]

    Bandyopadhyay S 2000 Phys. Rev. B 61 13813

    [24]

    Tsitsishvili E, Lozano G S, Gogolin A O 2004 Phys. Rev. B 70 115316

    [25]
    [26]

    Tapash Chakraborty, Pekka Pietilainen 2005 Phys. Rev. B 71 113305

    [27]
    [28]

    Fai L C, Teboul V, Monteil A 2005 Condensed Matter Physics 8 639

    [29]
    [30]

    Liu J Xiao J L, Huo S F, Chen Z Y 2007 Commun. Theor. Phys. 48 930

    [31]
    [32]

    Li Z X, Xiao J L, Wang H Y 2010 Modern Physics Letters B 24 2423

    [33]
    [34]
    [35]

    Li Z X, Xiao J, Liu A H 2011 International Journal of Nanoscience 10 501

    [36]

    Wang Q W, Hong L 2012 Acta Phys. Sin. 61 017107 (in Chinese)[王启文, 红兰 2012 61 017107]

    [37]
    [38]

    Peeters F M, Schweigert V A 1996 Phys. Rev. B 53 1468

    [39]
    [40]

    Price R, Zhu X, Sarma S D 1995 Phys. Rev. B 51 2017

    [41]
    [42]
    [43]

    Lommer G, Malcher F, Rossler U 1988 Phys. Rev. Lett. 60 728

    [44]
    [45]

    Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310

    [46]

    Voskoboynikov O, Lee C P, Tretyak O 2001 Phys. Rev. B 63 165306

    [47]
    [48]

    Tokuda N 1980 J. Phys. C: Solid State Phys. 13 L851

    [49]
    [50]
    [51]

    Lee T D, Low F M, Pines D 1953 Phys. Rev. 90 297

    [52]

    Chakraborty T, Pietilinen P 2005 Phys. Rev. B 71 113305

    [53]
  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究.  , 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化.  , 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [3] 红兰, 戈君, 双山, 刘达权. Rashba效应和Zeeman效应对各向异性量子点中束缚磁极化子性质的影响.  , 2022, 71(1): 016301. doi: 10.7498/aps.71.20210803
    [4] 红兰, 戈君. Rashba效应和Zeeman效应对各向异性量子点中束缚磁极化子性质的影响.  , 2021, (): . doi: 10.7498/aps.70.20210803
    [5] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干.  , 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [6] 易煦农, 李瑛, 凌晓辉, 张志友, 范滇元. 光在Metasurface中的自旋-轨道相互作用.  , 2015, 64(24): 244202. doi: 10.7498/aps.64.244202
    [7] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质.  , 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [8] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩.  , 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [9] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变.  , 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [10] 蒋洪良, 张荣军, 周宏明, 姚端正, 熊贵光. InAs量子点中自旋-轨道相互作用下电子自旋弛豫的参量特征.  , 2011, 60(1): 017204. doi: 10.7498/aps.60.017204
    [11] 刘祖黎, 苑新喜, 魏合林, 姚凯伦. 非均一相互作用能对超薄膜生长影响的Monte Carlo模拟研究.  , 2010, 59(9): 6430-6437. doi: 10.7498/aps.59.6430
    [12] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究.  , 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [13] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解.  , 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [14] 额尔敦朝鲁, 于若蒙. 非对称量子点中磁极化子性质的磁场和温度依赖性.  , 2008, 57(11): 7100-7107. doi: 10.7498/aps.57.7100
    [15] 任学藻, 廖 旭, 刘 涛, 汪克林. 电子与双声子相互作用对Holstein极化子的影响.  , 2006, 55(6): 2865-2870. doi: 10.7498/aps.55.2865
    [16] 肖春涛, 韩立安, 薛德胜, 赵俊慧, H.Kunkel, G.Williams. La0.67Pb0.33MnO3的磁性及输运特性.  , 2003, 52(5): 1245-1249. doi: 10.7498/aps.52.1245
    [17] 刘翠红, 陈传誉, 马本堃. 极化子效应对量子盘中线性和非线性光吸收系数的影响.  , 2002, 51(9): 2022-2028. doi: 10.7498/aps.51.2022
    [18] 张 淳, 马允胜, 孙 鑫, 叶 成. 电子相互作用和高聚物中的极化子.  , 1999, 48(5): 917-925. doi: 10.7498/aps.48.917
    [19] 刘杰, 方可, 孙鑫. 电子相互作用对聚乙炔中极化子电子态的影响.  , 1989, 38(1): 9-15. doi: 10.7498/aps.38.9
    [20] 路文昌, 张涛, 王勉. Ni(100)面上吸附原子的间接相互作用能.  , 1989, 38(11): 1864-1868. doi: 10.7498/aps.38.1864
计量
  • 文章访问数:  5656
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-25
  • 修回日期:  2014-05-08
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map