-
The quantum dynamics calculations are carried out for the title reaction D +SiD+→D2+Si+ to obtain the initial (
$ \nu = 0{\text{ }},j = 0 $ )reaction probability, integral cross section (ICS) and rate constant on the potential energy surface (PES) of Gao, Meng and Song. A total of 110 partial waves are calculated by using the Chebyshev wave packet method with full Coriolis coupling (CC) and centrifugal sudden (CS) approximation in a collision energy range from 1.0 × 10–3 to 1.0 eV. The calculated probability decreases with the collision energy increasing except for J≤40. The calculation results indicate that the CS approximation will overestimate or underestimate the reaction probability . The ICS decreases with the collision energy increasing and shows an oscillatory structure due to the$\rm{SiH_2^+} $ well on the reaction path. The results show that the neglect of the Coriolis coupling leads to the overestimation of the cross section and the rate constant. Besides, the discrepancy between the integral cross sections from the CC and CS calculations decreases clearly with collision energy increasing. Comparison with the corresponding results of H+CH+ reaction indicates that isotope substitution reaction makes the cross section and the rate constant underestimated. The resulting integral reaction cross section displays less oscillatory structure, especially in the exact quantum calculation with the full Coriolis coupling effect taken into consideration. The kinetic isotope effect$(\kappa_{\rm H+SiH^+}(T)/\kappa_{\rm D+SiD^+}(T))$ is found to decrease with temperature increasing. It can be seen that the reduced mass of reactant can exert a certain effect on dynamic behavior.-
Keywords:
- Chebyshev wave packet method /
- reaction probability /
- integral cross section /
- rate constant
[1] Bender C F, Schaefer H F 1971 J. Mol. Spectrosc. 37 423Google Scholar
[2] Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446Google Scholar
[3] Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285Google Scholar
[4] Herráez-Aguilar D, Jambrina P G, Menéndez M, Aldegunde J, Warmbier R, Aoiz F J 2014 Phys. Chem. Chem. Phys. 16 24800Google Scholar
[5] Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302Google Scholar
[6] Guo J, Zhang A J, Zhou Y, Liu J Y, Jia J F, Wu H S 2017 Chem. Phys. Lett. 689 121Google Scholar
[7] Sundaram P, Manivannan V, Padmanaban R 2017 Phys. Chem. Chem. Phys. 19 20172Google Scholar
[8] Scheier P, Marsen B, Lonfat M, Schneider W D 2000 Surf. Sci. 458 113Google Scholar
[9] Maus M, Gantefor G, Eberhardt W 2000 Appl. Phys. A 70 535Google Scholar
[10] Kasap S, Capper P 2017 Springer Handbook of Electronic and Photonic Materials (Heidelberg: Springer) pp573–576
[11] Zhang Y G, Dou G, Cui J, Yu Y 2018 J. Mol. Struct. 1165 318Google Scholar
[12] Bauer C, Hirst D M, Hall D I, Sarre P J, Rosmus P J. 1994 Chem. Sot. Faraday Trans. 90 517Google Scholar
[13] Vach H, Chaâbane N, Peslherbe G H 2002 Chem. Phys. Lett. 352 127Google Scholar
[14] Chaâbane N, Vach H, Cabarrocas P R I 2004 J. Phys. Chem. A 108 1818Google Scholar
[15] Gao F, Zhang L L, Zhao W L, Meng Q T, Song Y Z 2019 J. Chem. Phys. 150 224304Google Scholar
[16] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar
[17] 高峰 2020 博士学位论文 (济南: 山东师范大学)
Gao F 2020 Ph. D. Dissertation (Jinan: Shandong Normal University) (in Chinese)
[18] Zhao W L, Tan R S, Cao X C, Gao F, Meng Q T 2021 Chin. Phys. B 30 123403Google Scholar
[19] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志 2015 64 043402Google Scholar
Wang M X, Wang M S, Yang C L, Liu J, Ma X G, Wang L Z 2015 Acta Phys. Sin. 64 043402Google Scholar
[20] 夏文泽, 于永江, 杨传路 2012 61 223401Google Scholar
Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin 61 223401Google Scholar
[21] Guo L, Yang Y F, Fan X X, Ma F C, Li Y Q 2017 Commun. Theor. Phys. 67 549Google Scholar
[22] Zhang J Z H 1999 Theory and Application of Quantum Molecular Dynamics (Singapore: World Scientific) pp149–150
[23] Lin S Y, Guo H 2003 J. Chem. Phys. 119 11602Google Scholar
[24] Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 102 7390Google Scholar
[25] Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 103 2903Google Scholar
[26] Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967Google Scholar
[27] Neuhauser D, Baer M, Judson R S, Kouri D J 1990 J. Chem. Phys. 93 312Google Scholar
[28] Althorpe S C 2001 J. Chem. Phys. 114 1601Google Scholar
[29] Zhai H C, Lin S Y 2015 Chem. Phys. 455 57Google Scholar
[30] Bowman J M 1991 J. Phys. Chem. 95 4960Google Scholar
[31] Gray S K, Goldfield, E M, Schatz G C, Balint-Kurti G G 1999 Phys. Chem. Chem. Phys. 1 1141Google Scholar
[32] Clary D C 1984 Mol. Phys. 53 3Google Scholar
[33] Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431Google Scholar
[34] De Fazio D, Castillo J F 1999 Phys. Chem. Chem. Phys. 1 1165Google Scholar
[35] Lu R F, Wang Y H, Deng K M, 2013 J. Comput. Chem. 34 1735Google Scholar
-
图 3
$ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $ 反应不同分波 (J = 5, 20, 40, 60, 80, 100)的反应概率随碰撞能量的变化, 黑色实线对应CS概率, 红色虚线对应CC概率Figure 3. The reaction probabilities of CC and CS calculations for
$ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $ reaction at J = 5, 20, 40, 60, 80, and 100, The black soid line is for CS probability and the red dashed line is for CC probability.表 1 波包计算中的数值参量(除特殊说明, 均采用原子单位 a.u.)
Table 1. Model parameters of wave packet calculation (The atomic unit is used in the calculation unlessotherwise stated).
坐标取值范围和基组数 吸收势 初始波包 光谱控制 流计算的位置 传播步数 $ R \in (0.2, \, 22) \; ({N_R} = 383) $
$ r \in (0.5, \, 16) \; ({N_r} = 255) $
$ \gamma \in (0, \, {180^ \circ }) \; ({N_\gamma } = 200) $$ {R_d} = 18.0 \;\; {d_R} = 0.0005 $
$ {r_d} = 14.0 \;\; {d_r} = 0.001 $$ {R_0} = 16.0 $
$ {E_0} = 0.15{\text{ eV}} $
$ \delta = 0.3 $1.0 $ {r_f} = 13.8 $ 50000 -
[1] Bender C F, Schaefer H F 1971 J. Mol. Spectrosc. 37 423Google Scholar
[2] Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446Google Scholar
[3] Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285Google Scholar
[4] Herráez-Aguilar D, Jambrina P G, Menéndez M, Aldegunde J, Warmbier R, Aoiz F J 2014 Phys. Chem. Chem. Phys. 16 24800Google Scholar
[5] Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302Google Scholar
[6] Guo J, Zhang A J, Zhou Y, Liu J Y, Jia J F, Wu H S 2017 Chem. Phys. Lett. 689 121Google Scholar
[7] Sundaram P, Manivannan V, Padmanaban R 2017 Phys. Chem. Chem. Phys. 19 20172Google Scholar
[8] Scheier P, Marsen B, Lonfat M, Schneider W D 2000 Surf. Sci. 458 113Google Scholar
[9] Maus M, Gantefor G, Eberhardt W 2000 Appl. Phys. A 70 535Google Scholar
[10] Kasap S, Capper P 2017 Springer Handbook of Electronic and Photonic Materials (Heidelberg: Springer) pp573–576
[11] Zhang Y G, Dou G, Cui J, Yu Y 2018 J. Mol. Struct. 1165 318Google Scholar
[12] Bauer C, Hirst D M, Hall D I, Sarre P J, Rosmus P J. 1994 Chem. Sot. Faraday Trans. 90 517Google Scholar
[13] Vach H, Chaâbane N, Peslherbe G H 2002 Chem. Phys. Lett. 352 127Google Scholar
[14] Chaâbane N, Vach H, Cabarrocas P R I 2004 J. Phys. Chem. A 108 1818Google Scholar
[15] Gao F, Zhang L L, Zhao W L, Meng Q T, Song Y Z 2019 J. Chem. Phys. 150 224304Google Scholar
[16] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar
[17] 高峰 2020 博士学位论文 (济南: 山东师范大学)
Gao F 2020 Ph. D. Dissertation (Jinan: Shandong Normal University) (in Chinese)
[18] Zhao W L, Tan R S, Cao X C, Gao F, Meng Q T 2021 Chin. Phys. B 30 123403Google Scholar
[19] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志 2015 64 043402Google Scholar
Wang M X, Wang M S, Yang C L, Liu J, Ma X G, Wang L Z 2015 Acta Phys. Sin. 64 043402Google Scholar
[20] 夏文泽, 于永江, 杨传路 2012 61 223401Google Scholar
Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin 61 223401Google Scholar
[21] Guo L, Yang Y F, Fan X X, Ma F C, Li Y Q 2017 Commun. Theor. Phys. 67 549Google Scholar
[22] Zhang J Z H 1999 Theory and Application of Quantum Molecular Dynamics (Singapore: World Scientific) pp149–150
[23] Lin S Y, Guo H 2003 J. Chem. Phys. 119 11602Google Scholar
[24] Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 102 7390Google Scholar
[25] Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 103 2903Google Scholar
[26] Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967Google Scholar
[27] Neuhauser D, Baer M, Judson R S, Kouri D J 1990 J. Chem. Phys. 93 312Google Scholar
[28] Althorpe S C 2001 J. Chem. Phys. 114 1601Google Scholar
[29] Zhai H C, Lin S Y 2015 Chem. Phys. 455 57Google Scholar
[30] Bowman J M 1991 J. Phys. Chem. 95 4960Google Scholar
[31] Gray S K, Goldfield, E M, Schatz G C, Balint-Kurti G G 1999 Phys. Chem. Chem. Phys. 1 1141Google Scholar
[32] Clary D C 1984 Mol. Phys. 53 3Google Scholar
[33] Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431Google Scholar
[34] De Fazio D, Castillo J F 1999 Phys. Chem. Chem. Phys. 1 1165Google Scholar
[35] Lu R F, Wang Y H, Deng K M, 2013 J. Comput. Chem. 34 1735Google Scholar
Catalog
Metrics
- Abstract views: 2520
- PDF Downloads: 40
- Cited By: 0