-
Co-based metallic glass (MG) is a new class of soft magnetic material and has promising applications in high-frequency fields due to its high magnetic permeability and low coercivity. However, this kind of MG has poor glass-formation ability (GFA) and relatively low saturated magnetic flux density, so its application scope is limited. The atomic size of metalloid element M (B, C, Si, and P) is small, which can easily enter into the gap between atoms, and there is a relatively large negative enthalpy of mixing between metalloid element and metal element. Therefore, alloying with metalloid element M is an effective method to improve the GFA while maintaining superior soft magnetic properties for Co-based MG. In this work, the formation process of Co72Y3B15M10 MG is simulated by ab initio molecular dynamics (AIMD) method, and the effects of the addition of metalloid elements C, Si, P on the GFA and magnetic properties of Co-Y-B MGs are investigated. It is devoted to analyzing the relationship between local atomic structure and property at an atomic level. According to the results of the characterization parameters of local atomic structure (pair distribution function, coordination numbers, chemical short-range order, Voronoi polyhedron index, local five-fold symmetry, and mean square displacement), it is found that the GFA of the four alloys is different due to their different local atomic structures. Both Co72Y3B15C10 alloy and Co72Y3B15P10 alloy possess a higher fraction of prism structure, weaker solute segregation between B/C-C and B/P-P atoms, higher atomic diffusivity in the supercooled state (1100 K), and hence weakening the GFA of the alloys. The Co72Y3B15Si10 alloy has a higher fraction of icosahedral-like structure, stronger attraction between Co-Si atoms and the solute segregation between B/Si-Si atoms, lower atomic diffusivity in the supercooled state, thereby increasing the GFA. Therefore, the addition of Si is beneficial for enhancing the GFA, while the addition of C or P will reduce the GFA, that is, the GFA of the four alloys decreases in the order of Co72Y3B15Si10 > Co72Y3B25 > Co72Y3B15P10 > Co72Y3B15C10. In terms of magnetic properties, with the addition of C, Si, P elements, the total magnetic moment of Co72Y3B15M10 (M = B, C, Si, P) alloy decreases in the following order: Co72Y3B25 > Co72Y3B15Si10 > Co72Y3B15C10 > Co72Y3B15P10. The stronger p-d orbital hybridization between Co-Si atoms enhances the ferromagnetic exchange interaction, leading the total magnetic moment to be less affected by Si addition. -
Keywords:
- Co-based metallic glasses /
- ab initio molecular dynamics simulations /
- glass-forming ability /
- magnetic property
[1] Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45Google Scholar
[2] Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661Google Scholar
[3] Wang Q Q, Zhang G L, Zhou J, Yuan C C, Shen B L 2020 J. Alloys Compd. 820 153105Google Scholar
[4] Taghvaei A H, Stoica M, Prashanth K G, Eckert J 2013 Acta Mater. 61 6609Google Scholar
[5] Wang W H 2007 Prog. Mater. Sci. 52 540Google Scholar
[6] Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965Google Scholar
[7] Zhao Y M, Li X, Liu X B, Bi J Z, Wu Y, Xiao R J, Li R, Zhang T J 2021 Mater. Sci. Technol. 86 110Google Scholar
[8] Pang S J, Zhang T, Asami K, Inoue A 2002 Acta Mater. 50 489Google Scholar
[9] Shen B L, Inoue A 2002 Mater. Trans. 43 1235Google Scholar
[10] Jiang J W, Li Q, Duan H M, Li H X 2017 Comput. Mater. Sci 130 76Google Scholar
[11] Zhang W, Li Q, Duan H M 2015 J. Appl. Phys 117 104901Google Scholar
[12] Hibino T, Bitoh T 2017 J. Alloys Compd. 707 82Google Scholar
[13] Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloys Compd. 656 729Google Scholar
[14] Guo G Q, Yang L, Wu S Y, Zeng Q S, Sun C J, Wang Y G 2016 Mater. Des. 103 308Google Scholar
[15] Ran Y Z, Li Y H, Ma S, Lai L Q, Chen J, Wang X D, Jiang L, Yao M, Zhang W 2022 J. Alloys Compd. 899 163326Google Scholar
[16] Yu Q, Wang X D, Lou H B, Cao Q P, Jiang J Z 2016 Acta Mater. 102 116Google Scholar
[17] Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501Google Scholar
[18] Chen H, Zhou S X, Dong B S, Jin J J, Liu T Q, Guan P F 2020 J. Alloys Compd. 819 153062Google Scholar
[19] Liang X Y, Li Y H, Bao F, Zhu Z W, Zhang H F, Zhang W 2021 Intermetallics 132 107135Google Scholar
[20] Kohn W, Sham L J 1965 Phys. Rev. 140 1133Google Scholar
[21] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[22] Kresse G, Hanfner J 1993 Phys. Rev. B 47 558Google Scholar
[23] Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298Google Scholar
[24] Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar
[25] Nosé S 1984 J. Chem. Phys. 81 511Google Scholar
[26] Spreiter Q, Walter M 1999 J. Comput. Phys. 152 102Google Scholar
[27] Hamidreza H, Rossitza P 2018 ACS Catal. 8 11773Google Scholar
[28] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar
[29] Cowley J M 1950 J. Appl. Phys. 21 24Google Scholar
[30] Finney J L 1977 Nature 266 309Google Scholar
[31] Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310Google Scholar
[32] Zhao Y F, Lin D Y, Chen X H, Liu Z K, Hui X D 2014 Acta Mater. 67 266Google Scholar
[33] Pont M, Puzniak R, Rao K V 1992 J. Appl. Phys. 71 5585Google Scholar
[34] Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar
[35] Hirata A, Hirotsu Y, Ohkubo T, Hanada T, Bengus V Z 2006 Phys. Rev. B 74 214206Google Scholar
[36] Pang H, Jin Z H, Lu K 2003 Phys. Rev. B 67 094113Google Scholar
[37] Williams A R, Moruzzi V L, Malozemoff A P, Terakura K 1983 IEEE Trans. Magn. 19 1983Google Scholar
[38] Yuan C C, Yang F, Xi X K, Shi C L, Moritz H D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar
-
图 4 (a)—(e) 300 K时Co72Y3B15M10合金中以Co, B, C, Si, P原子为中心的主要Voronoi多面体含量, (f) 4种合金的LFFS参数W随温度的变化趋势
Figure 4. (a)–(e) Fractions of major Voronoi polyhedral centered by Co, B, C, Si, and P atoms in Co72Y3B15M10 alloys at 300 K; (f) temperature dependence of LFFS parameters W during cooling for all of the alloys.
图 6 (a) Co72Y3B25, (b) Co72Y3B15C10, (c) Co72Y3B15Si10, (d) Co72Y3B15P10合金的总电子态密度和分波态密度, (e) 4种合金在费米能级附近的总电子态密度
Figure 6. The total density of state (DOS) and partial DOS for (a) Co72Y3B25, (b) Co72Y3B15C10, (c) Co72Y3B15Si10, (d) Co72Y3B15P10 alloys, and (e) TDOSs for all of the alloys near the Fermi level.
表 1 Co72Y3B15M10合金的总磁矩和各元素的磁矩(单位: μB)
Table 1. The total magnetic moments of Co72Y3B15M10 alloys and the local magnetic moments for different elements (unit: μB).
Alloys μtotal μCo μY μB μC μSi μP Co72Y3B25 75.179 1.086 –0.133 –0.063 — — — Co72Y3B15C10 69.645 1.005 –0.097 –0.067 –0.042 — — Co72Y3B15Si10 72.722 1.053 –0.140 –0.059 — –0.037 — Co72Y3B15P10 68.969 0.977 –0.097 –0.057 — — –0.023 -
[1] Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45Google Scholar
[2] Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661Google Scholar
[3] Wang Q Q, Zhang G L, Zhou J, Yuan C C, Shen B L 2020 J. Alloys Compd. 820 153105Google Scholar
[4] Taghvaei A H, Stoica M, Prashanth K G, Eckert J 2013 Acta Mater. 61 6609Google Scholar
[5] Wang W H 2007 Prog. Mater. Sci. 52 540Google Scholar
[6] Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965Google Scholar
[7] Zhao Y M, Li X, Liu X B, Bi J Z, Wu Y, Xiao R J, Li R, Zhang T J 2021 Mater. Sci. Technol. 86 110Google Scholar
[8] Pang S J, Zhang T, Asami K, Inoue A 2002 Acta Mater. 50 489Google Scholar
[9] Shen B L, Inoue A 2002 Mater. Trans. 43 1235Google Scholar
[10] Jiang J W, Li Q, Duan H M, Li H X 2017 Comput. Mater. Sci 130 76Google Scholar
[11] Zhang W, Li Q, Duan H M 2015 J. Appl. Phys 117 104901Google Scholar
[12] Hibino T, Bitoh T 2017 J. Alloys Compd. 707 82Google Scholar
[13] Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloys Compd. 656 729Google Scholar
[14] Guo G Q, Yang L, Wu S Y, Zeng Q S, Sun C J, Wang Y G 2016 Mater. Des. 103 308Google Scholar
[15] Ran Y Z, Li Y H, Ma S, Lai L Q, Chen J, Wang X D, Jiang L, Yao M, Zhang W 2022 J. Alloys Compd. 899 163326Google Scholar
[16] Yu Q, Wang X D, Lou H B, Cao Q P, Jiang J Z 2016 Acta Mater. 102 116Google Scholar
[17] Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501Google Scholar
[18] Chen H, Zhou S X, Dong B S, Jin J J, Liu T Q, Guan P F 2020 J. Alloys Compd. 819 153062Google Scholar
[19] Liang X Y, Li Y H, Bao F, Zhu Z W, Zhang H F, Zhang W 2021 Intermetallics 132 107135Google Scholar
[20] Kohn W, Sham L J 1965 Phys. Rev. 140 1133Google Scholar
[21] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[22] Kresse G, Hanfner J 1993 Phys. Rev. B 47 558Google Scholar
[23] Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298Google Scholar
[24] Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar
[25] Nosé S 1984 J. Chem. Phys. 81 511Google Scholar
[26] Spreiter Q, Walter M 1999 J. Comput. Phys. 152 102Google Scholar
[27] Hamidreza H, Rossitza P 2018 ACS Catal. 8 11773Google Scholar
[28] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar
[29] Cowley J M 1950 J. Appl. Phys. 21 24Google Scholar
[30] Finney J L 1977 Nature 266 309Google Scholar
[31] Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310Google Scholar
[32] Zhao Y F, Lin D Y, Chen X H, Liu Z K, Hui X D 2014 Acta Mater. 67 266Google Scholar
[33] Pont M, Puzniak R, Rao K V 1992 J. Appl. Phys. 71 5585Google Scholar
[34] Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar
[35] Hirata A, Hirotsu Y, Ohkubo T, Hanada T, Bengus V Z 2006 Phys. Rev. B 74 214206Google Scholar
[36] Pang H, Jin Z H, Lu K 2003 Phys. Rev. B 67 094113Google Scholar
[37] Williams A R, Moruzzi V L, Malozemoff A P, Terakura K 1983 IEEE Trans. Magn. 19 1983Google Scholar
[38] Yuan C C, Yang F, Xi X K, Shi C L, Moritz H D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar
Catalog
Metrics
- Abstract views: 3791
- PDF Downloads: 71
- Cited By: 0