-
在0—2.0 eV的碰撞能范围内采用含时量子波包方法和二阶分裂算符传播子对初始量子态为(v0 = 0, j0 = 0)的D + DBr反应进行了态分辨理论水平上的动力学计算. 计算了抽取反应通道D + DBr → Br + D2和置换反应通道
$ \rm D' + DBr \to D + D'Br $ 的反应概率、积分截面、微分截面、产物的振动和转动分布以及速率常数等动力学性质, 并与相应的理论和实验结果进行了比较. 结果表明: 计算的速率常数与实验结果十分符合. 微分截面的结果表明: 对于抽取反应, 前向的剥离反应机制在反应过程中占据主导地位; 对于置换反应, 头碰头的反弹机制占据主导地位.The state-to-state quantum dynamics studies of the abstraction channel D + DBr → Br + D2 and exchange channel$\rm D' + DBr \to D + D'Br$ of the D +DBr reaction are carried out by using the time-dependent wave packet method with second-order split operator in a collision energy range from 0 to 2.0 eV. The potential energy surface reported by Li et al. (Li W T, He D, Sun Z G 2019 J. Chem. Phys. 151 185102) is adopted in this work. The dynamics properties such as reaction probability, integral cross section (ICS), differential cross section (DCS), the distribution of product ro-vibrational states, specific-state rate constant, etc. are reported and compared with available theoretical and experimental values. The ICSs are compared with the values reported by Zhang et al. and good agreement is achieved between each other, except a little difference at high collision energy. The specific-state rate constants of the title reaction are studied in a temperature range from 200 to 1000 K and present values are in good agreement with experimental data and the Zhang et al.’s results. For abstraction reaction, the backward DCSs reflect the head on “rebound” mechanism dominates in the low collision energy region and abstract mechanism plays a dominant role for the abstraction reaction at high collision energy. In addition, sideward DCSs are observed which stem from the crossing of the two electronic states on the potential energy surface and these values are not reliable. For exchange reaction, the head on “rebound” mechanism dominates the reaction in the collision energy range studied. However, the forward and sideward DCSs are more and more apparent as the collision energy increases.-
Keywords:
- D + DBr /
- reaction probability /
- integral cross section /
- rate constant
[1] Husain D, Slater K H 1980 J. Chem. Soc., Faraday Trans. 76 606
Google Scholar
[2] Jourdain J L, Lebras G, Combourieu J 1981 Chem. Phys. Lett. 78 483
Google Scholar
[3] Seakins P W, Pilling M J 1991 J. Phys. Chem. 95 9878
Google Scholar
[4] Talukdar R K, Warren R F, Vaghijiani G L, Ravishankara A R 1992 Int. J. Chem. Kinet. 24 973
Google Scholar
[5] Mitchell T J, Gonzalez A C, Benson S W 1995 J. Phys. Chem. 99 16960
Google Scholar
[6] Umemoto H, Wada Y, Tsunashima S, Takayanagi T, Sato S 1990 Chem. Phys. 143 333
Google Scholar
[7] Aker P M, Germann G J, Tabor K D, Valentini J J 1989 J. Chem. Phys. 90 4809
Google Scholar
[8] Aker P M, Germann G J, Valentini J J 1989 J. Chem. Phys. 90 4795
Google Scholar
[9] Aker P M, Valentini J J 1993 Int. Rev. Phys. Chem. 12 363
Google Scholar
[10] Pomerantz A E, Camden J P, Chiou A S, Ausfelder F, Chawla N, Hase W L, Zare R N 2005 J. Am. Chem. Soc. 127 16368
Google Scholar
[11] Lynch G C, Truhlar D G, Brown F B, Zhao J G 1995 J. Phys. Chem. 99 207
Google Scholar
[12] Kurosaki Y, Takayanagi T 2003 J. Chem. Phys. 119 7838
Google Scholar
[13] Kurosaki Y, Takayanagi T 2005 Chem. Phys. Lett. 406 121
Google Scholar
[14] Quan W L, Song Q, Tang B Y 2007 Chem. Phys. Lett. 437 165
Google Scholar
[15] Quan W L, Song Q, Tang B Y 2007 Chem. Phys. Lett. 442 228
Google Scholar
[16] Quan W L, Tang P Y, Tang B Y 2007 Int. J. Quantum Chem. 107 657
Google Scholar
[17] Fu B, Zhang D H 2007 J. Phys. Chem. A 111 9516
Google Scholar
[18] Fu B, Zhou Y, Zhang D H 2008 J. Theor. Comput. Chem. 7 777
Google Scholar
[19] Jiang B, Xie C J, Xie D Q 2011 J. Chem. Phys. 134 114301
Google Scholar
[20] Xie C J, Jiang B, Xie D Q 2011 J. Chem. Phys. 134 184303
Google Scholar
[21] Jiang B, Xie C J, Xie D Q 2011 J. Chem. Phys. 135 164311
Google Scholar
[22] Xie C J, Jiang B, Xie D Q, Sun Z G 2012 J. Chem. Phys. 136 114310
Google Scholar
[23] Zhang A J, Zhang P Y, Chu T S, Han K L, He G Z 2012 J. Chem. Phys. 137 194305
Google Scholar
[24] Zhang A J, Jia J F, Wu H S, He G Z 2014 J. Mol. Model. 20 2367
Google Scholar
[25] Li W T, He D, Sun Z G 2019 J. Chem. Phys. 151 185102
Google Scholar
[26] 李文涛, 于文涛, 姚明海 2018 67 103401
Google Scholar
Li W T, Yu W T, Yao M H 2018 Acta Phys. Sin. 67 103401
Google Scholar
[27] 张静, 魏巍, 高守宝, 孟庆田 2015 64 063101
Google Scholar
Zhang J, Wei W, Gao S B, Meng Q T 2015 Acta Phys. Sin. 64 063101
Google Scholar
[28] 段志欣, 邱明辉, 姚翠霞 2014 63 063402
Google Scholar
Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402
Google Scholar
[29] 袁美玲, 李文涛 2019 68 083401
Google Scholar
Yuan M L, Li W T 2019 Acta Phys. Sin. 68 083401
Google Scholar
[30] Zhai H S, Liang G L, Ding J X, Liu Y F 2019 Chin. Phys. B 28 053401
Google Scholar
[31] Feit M D, Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412
Google Scholar
[32] Fleck J A, Morris Jr J R, Feit M D 1976 Appl. Phys. 10 129
[33] Light J C, Hamilton I P, Lill J V 1985 J. Chem. Phys. 82 1400
Google Scholar
[34] Gómez-Carrasco S, Roncero O 2006 J. Chem. Phys. 125 054102
Google Scholar
[35] Sun Z G, Lin X, Lee S Y, Zhang D H 2009 J. Phys. Chem. A 113 4145
Google Scholar
[36] Polanyi J C 1987 Angew. Chem. Int. Ed. 26 952
Google Scholar
[37] Yue D G, Zhang L L, Zhao J, Song Y Z, Meng Q T 2019 Eur. Phys. J. D 73 219
Google Scholar
-
图 8 (a) 在200−1000 K温度范围内, 抽取反应的速率常数以及文献[1,6,24]的结果; (b) 在0−3000 K温度范围内, 置换反应的速率常数
Fig. 8. (a) The rate constant of abstraction reaction and the values obtained from Refs.[1,6,24] in the temperature range from 200 to 1000 K; (b) the rate constant of the exchange reaction in the temperature range from 0 to 3000 K.
-
[1] Husain D, Slater K H 1980 J. Chem. Soc., Faraday Trans. 76 606
Google Scholar
[2] Jourdain J L, Lebras G, Combourieu J 1981 Chem. Phys. Lett. 78 483
Google Scholar
[3] Seakins P W, Pilling M J 1991 J. Phys. Chem. 95 9878
Google Scholar
[4] Talukdar R K, Warren R F, Vaghijiani G L, Ravishankara A R 1992 Int. J. Chem. Kinet. 24 973
Google Scholar
[5] Mitchell T J, Gonzalez A C, Benson S W 1995 J. Phys. Chem. 99 16960
Google Scholar
[6] Umemoto H, Wada Y, Tsunashima S, Takayanagi T, Sato S 1990 Chem. Phys. 143 333
Google Scholar
[7] Aker P M, Germann G J, Tabor K D, Valentini J J 1989 J. Chem. Phys. 90 4809
Google Scholar
[8] Aker P M, Germann G J, Valentini J J 1989 J. Chem. Phys. 90 4795
Google Scholar
[9] Aker P M, Valentini J J 1993 Int. Rev. Phys. Chem. 12 363
Google Scholar
[10] Pomerantz A E, Camden J P, Chiou A S, Ausfelder F, Chawla N, Hase W L, Zare R N 2005 J. Am. Chem. Soc. 127 16368
Google Scholar
[11] Lynch G C, Truhlar D G, Brown F B, Zhao J G 1995 J. Phys. Chem. 99 207
Google Scholar
[12] Kurosaki Y, Takayanagi T 2003 J. Chem. Phys. 119 7838
Google Scholar
[13] Kurosaki Y, Takayanagi T 2005 Chem. Phys. Lett. 406 121
Google Scholar
[14] Quan W L, Song Q, Tang B Y 2007 Chem. Phys. Lett. 437 165
Google Scholar
[15] Quan W L, Song Q, Tang B Y 2007 Chem. Phys. Lett. 442 228
Google Scholar
[16] Quan W L, Tang P Y, Tang B Y 2007 Int. J. Quantum Chem. 107 657
Google Scholar
[17] Fu B, Zhang D H 2007 J. Phys. Chem. A 111 9516
Google Scholar
[18] Fu B, Zhou Y, Zhang D H 2008 J. Theor. Comput. Chem. 7 777
Google Scholar
[19] Jiang B, Xie C J, Xie D Q 2011 J. Chem. Phys. 134 114301
Google Scholar
[20] Xie C J, Jiang B, Xie D Q 2011 J. Chem. Phys. 134 184303
Google Scholar
[21] Jiang B, Xie C J, Xie D Q 2011 J. Chem. Phys. 135 164311
Google Scholar
[22] Xie C J, Jiang B, Xie D Q, Sun Z G 2012 J. Chem. Phys. 136 114310
Google Scholar
[23] Zhang A J, Zhang P Y, Chu T S, Han K L, He G Z 2012 J. Chem. Phys. 137 194305
Google Scholar
[24] Zhang A J, Jia J F, Wu H S, He G Z 2014 J. Mol. Model. 20 2367
Google Scholar
[25] Li W T, He D, Sun Z G 2019 J. Chem. Phys. 151 185102
Google Scholar
[26] 李文涛, 于文涛, 姚明海 2018 67 103401
Google Scholar
Li W T, Yu W T, Yao M H 2018 Acta Phys. Sin. 67 103401
Google Scholar
[27] 张静, 魏巍, 高守宝, 孟庆田 2015 64 063101
Google Scholar
Zhang J, Wei W, Gao S B, Meng Q T 2015 Acta Phys. Sin. 64 063101
Google Scholar
[28] 段志欣, 邱明辉, 姚翠霞 2014 63 063402
Google Scholar
Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402
Google Scholar
[29] 袁美玲, 李文涛 2019 68 083401
Google Scholar
Yuan M L, Li W T 2019 Acta Phys. Sin. 68 083401
Google Scholar
[30] Zhai H S, Liang G L, Ding J X, Liu Y F 2019 Chin. Phys. B 28 053401
Google Scholar
[31] Feit M D, Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412
Google Scholar
[32] Fleck J A, Morris Jr J R, Feit M D 1976 Appl. Phys. 10 129
[33] Light J C, Hamilton I P, Lill J V 1985 J. Chem. Phys. 82 1400
Google Scholar
[34] Gómez-Carrasco S, Roncero O 2006 J. Chem. Phys. 125 054102
Google Scholar
[35] Sun Z G, Lin X, Lee S Y, Zhang D H 2009 J. Phys. Chem. A 113 4145
Google Scholar
[36] Polanyi J C 1987 Angew. Chem. Int. Ed. 26 952
Google Scholar
[37] Yue D G, Zhang L L, Zhao J, Song Y Z, Meng Q T 2019 Eur. Phys. J. D 73 219
Google Scholar
计量
- 文章访问数: 6487
- PDF下载量: 50
- 被引次数: 0