搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H+Li2: 一个典型的释能反应体系及其含时动力学研究

张静 魏巍 高守宝 孟庆田

引用本文:
Citation:

H+Li2: 一个典型的释能反应体系及其含时动力学研究

张静, 魏巍, 高守宝, 孟庆田

H + Li2: a typical exothermic reactive system and its time-dependent dynamics investigation

Zhang Jing, Wei Wei, Gao Shou-Bao, Meng Qing-Tian
PDF
导出引用
  • 利用含时量子波包动力学理论在HLi2 基态势能面上研究了H+Li2 → LiH+Li 反应的动力学性质. 计算得到了体系在0-0.4 eV 范围内J = 0 不同振动量子数(v = 0, 1, 2, 3), v = 0 不同转动量子数(J = 0, 5, 10,15) 下的反应概率、积分反应截面和热速率常数, 在此基础上讨论了释能反应的反应阈能随总角动量量子数的变化规律以及振动量子数对反应概率的影响等问题. 研究发现, 随着转动量子数的增大, 反应阈能也在逐渐增大; 然而随着振动量子数的增大, 由于反应为释能反应, 反应发生的概率却在逐渐减小. 分析了碰撞能对积分散射截面的影响以及温度对反应速率常数影响的规律.
    In this paper, the time-dependent wave-packet method is used to study the three-dimensional dynamical properties of the H+Li2 reactive system on its ground state potential energy surface. The reaction probabilities for J=0 with different vibrational quantum numbers v=0, 1, 2, 3 and for v=0 with different total rotational quantum numbers, integral cross sections and rate constants are calculated for collision energies in a range between 0 and 0.4 eV. The features of the reaction probabilities and reaction threshold energy are analyzed. The results show that the vibrational excitation has a certain inhibitory effect on the reaction process and the reaction threshold energy increases with the increase of J. These phenomena are associated with the type of the exothermic reaction of the reactive system. The influence of the collision energy on the integral cross sections and the effect of the temperature on reaction rate constants are also investigated.
    • 基金项目: 国家自然科学基金(批准号: 11074151)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074151).
    [1]

    Lee Y T, Gordon R J, Herschbach D R 1971 J. Chem. Phys. 54 2410

    [2]

    Wu C H, Ihle H R 1977 J. Chem. Phys. 66 4356

    [3]

    Vezin B, Dugourd Ph, Rayane D, Labastie P, Broyer M 1993 Chem. Phys. Lett. 202 209

    [4]

    Antoine R, Dugourd Ph, Rayane D, Allouche A R, Aubert-Frécon M, Broyer M 1996 Chem. Phys. Lett. 261 670

    [5]

    Shukla C P, Sathyamurthy N, Khuller I P 1987 J. Chem. Phys. 87 3251

    [6]

    Kim S K, Jeoung S C, Tan A L C, Herschbach D R 1991 J. Chem. Phys. 95 3854

    [7]

    Guosen Y, Hui X, Xie D 1997 Sci. China 40 342

    [8]

    Maniero A M, Acioli P H, e Silva G M, Gargano R 2010 Chem. Phys. Lett. 490 123

    [9]

    Vila H V R, Leal L A, Martins J B L, Skouteris D, e Silva G M, Gargano R 2012 J. Chem. Phys. 136 134319

    [10]

    Song Y Z, Li Y Q, Gao S B, Meng Q T 2014 Eur. Phys. J. D 68 3

    [11]

    da Cunha W F, Leal L A, da Cunha T F, e Silva G M, Gargano R, Martins J B L 2014 J. Mol. Model 20 2315

    [12]

    Kuppermann A, Schatz G C 1975 J. Chem. Phys. 62 2502

    [13]

    Redmon M J, Wyatt R E 1979 Chem. Phys. Lett. 63 209

    [14]

    Hutson J M, Schwartz C 1983 J. Chem. Phys. 79 5179

    [15]

    Schatz G C, Kuppermann A 1976 J. Chem. Phys. 65 4642

    [16]

    Kuppermann A, Kaye J A, Dwyer J P 1980 Chem. Phys. Lett. 74 257

    [17]

    Clary D C 1991 J. Chem. Phys. 95 7298

    [18]

    Deng C H, Feng D C, Cai Z T 1994 Sci. China B 37 1025

    [19]

    Schnieder L, Seekamp-Rahn K, Borkowski J, Wrede E, Welge K H, Aoiz F J, Bañiares L, D'Mello M J, Herrero V J, Rábanos V S, Wyatt R E 1995 Science 269 207

    [20]

    Zhang D H, Zhang J Z H 1993 J. Chem. Phys. 99 5615

    [21]

    Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese) [段志欣, 邱明辉, 姚翠霞 2014 63 063402]

    [22]

    Wang Y H, Xiao C Y, Deng K M, Lu R F 2014 Chin. Phys. B 23 043401

    [23]

    Xie T X, Zhang Y, Zhao M Y, Han K L 2003 Phys. Chem. Chem. Phys. 5 2034

    [24]

    Liu X G, Zhang Q G, Zhang Y C, Wang M L, Zhang Z H 2004 Chin. Phys. 13 1013

    [25]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [26]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [27]

    Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967

    [28]

    Meijer A J H M, Goldfield E M, Gray S K, Balint-Kurti G G 1998 Chem. Phys. Lett. 293 270

    [29]

    Beärda R A, van Hemert M C, van Dishoeck E F 1992 J. Chem. Phys. 97 8240

    [30]

    Song Y Z, Varandas A J C 2011 J. Phys. Chem. A 115 5274

    [31]

    Varandas A J C 1989 J. Chem. Phys. 90 4379

    [32]

    Sun Z P, Zhang C F, Lin S Y, Zheng Y J, Meng Q T, Bian W S 2013 J. Chem. Phys. 139 014306

    [33]

    Wei W, Gao S B, Sun Z P, Song Y Z, Meng Q T 2014 Chin. Phys. B 23 073101

  • [1]

    Lee Y T, Gordon R J, Herschbach D R 1971 J. Chem. Phys. 54 2410

    [2]

    Wu C H, Ihle H R 1977 J. Chem. Phys. 66 4356

    [3]

    Vezin B, Dugourd Ph, Rayane D, Labastie P, Broyer M 1993 Chem. Phys. Lett. 202 209

    [4]

    Antoine R, Dugourd Ph, Rayane D, Allouche A R, Aubert-Frécon M, Broyer M 1996 Chem. Phys. Lett. 261 670

    [5]

    Shukla C P, Sathyamurthy N, Khuller I P 1987 J. Chem. Phys. 87 3251

    [6]

    Kim S K, Jeoung S C, Tan A L C, Herschbach D R 1991 J. Chem. Phys. 95 3854

    [7]

    Guosen Y, Hui X, Xie D 1997 Sci. China 40 342

    [8]

    Maniero A M, Acioli P H, e Silva G M, Gargano R 2010 Chem. Phys. Lett. 490 123

    [9]

    Vila H V R, Leal L A, Martins J B L, Skouteris D, e Silva G M, Gargano R 2012 J. Chem. Phys. 136 134319

    [10]

    Song Y Z, Li Y Q, Gao S B, Meng Q T 2014 Eur. Phys. J. D 68 3

    [11]

    da Cunha W F, Leal L A, da Cunha T F, e Silva G M, Gargano R, Martins J B L 2014 J. Mol. Model 20 2315

    [12]

    Kuppermann A, Schatz G C 1975 J. Chem. Phys. 62 2502

    [13]

    Redmon M J, Wyatt R E 1979 Chem. Phys. Lett. 63 209

    [14]

    Hutson J M, Schwartz C 1983 J. Chem. Phys. 79 5179

    [15]

    Schatz G C, Kuppermann A 1976 J. Chem. Phys. 65 4642

    [16]

    Kuppermann A, Kaye J A, Dwyer J P 1980 Chem. Phys. Lett. 74 257

    [17]

    Clary D C 1991 J. Chem. Phys. 95 7298

    [18]

    Deng C H, Feng D C, Cai Z T 1994 Sci. China B 37 1025

    [19]

    Schnieder L, Seekamp-Rahn K, Borkowski J, Wrede E, Welge K H, Aoiz F J, Bañiares L, D'Mello M J, Herrero V J, Rábanos V S, Wyatt R E 1995 Science 269 207

    [20]

    Zhang D H, Zhang J Z H 1993 J. Chem. Phys. 99 5615

    [21]

    Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese) [段志欣, 邱明辉, 姚翠霞 2014 63 063402]

    [22]

    Wang Y H, Xiao C Y, Deng K M, Lu R F 2014 Chin. Phys. B 23 043401

    [23]

    Xie T X, Zhang Y, Zhao M Y, Han K L 2003 Phys. Chem. Chem. Phys. 5 2034

    [24]

    Liu X G, Zhang Q G, Zhang Y C, Wang M L, Zhang Z H 2004 Chin. Phys. 13 1013

    [25]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [26]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [27]

    Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967

    [28]

    Meijer A J H M, Goldfield E M, Gray S K, Balint-Kurti G G 1998 Chem. Phys. Lett. 293 270

    [29]

    Beärda R A, van Hemert M C, van Dishoeck E F 1992 J. Chem. Phys. 97 8240

    [30]

    Song Y Z, Varandas A J C 2011 J. Phys. Chem. A 115 5274

    [31]

    Varandas A J C 1989 J. Chem. Phys. 90 4379

    [32]

    Sun Z P, Zhang C F, Lin S Y, Zheng Y J, Meng Q T, Bian W S 2013 J. Chem. Phys. 139 014306

    [33]

    Wei W, Gao S B, Sun Z P, Song Y Z, Meng Q T 2014 Chin. Phys. B 23 073101

  • [1] 赵文丽, 宋玉志, 马超, 高峰, 孟庆田. 基于一个新SiH2(11A′)势能面的H+SiH反应动力学研究.  , 2024, 73(20): 203401. doi: 10.7498/aps.73.20240859
    [2] 周勇. F+CHD3→HF+CD3反应C—H伸缩振动激发的量子动力学研究.  , 2024, 73(9): 098201. doi: 10.7498/aps.73.20231832
    [3] 李文涛, 袁美玲, 王杰敏. C++H2反应的动力学研究: 基于一个新构建的势能面.  , 2022, 71(9): 093402. doi: 10.7498/aps.71.20212241
    [4] 赵文丽, 孙丰伟, 张红, 王永刚, 高峰, 孟庆田. $ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $反应量子波包动力学研究.  , 2022, 71(22): 228201. doi: 10.7498/aps.71.20221155
    [5] 袁方园, 朱子亮. D + DBr反应的态-态动力学研究.  , 2020, 69(11): 113401. doi: 10.7498/aps.69.20200321
    [6] 袁美玲, 李文涛. O++H2 → OH++H反应的动力学研究.  , 2019, 68(8): 083401. doi: 10.7498/aps.68.20182141
    [7] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应.  , 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [8] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应.  , 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [9] 杨欢, 邢玲玲, 张穗萌, 吴兴举, 袁好. 屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响.  , 2013, 62(18): 183402. doi: 10.7498/aps.62.183402
    [10] 周丽霞, 燕友果. 共面不对称条件下Ag+(4p,4d)(e,2e)反应三重微分截面的理论研究.  , 2012, 61(4): 043401. doi: 10.7498/aps.61.043401
    [11] 杨欢, 张穗萌, 邢玲玲, 吴兴举, 袁好. 氢原子(e, 2e) 反应中二重微分截面的理论研究.  , 2012, 61(13): 133401. doi: 10.7498/aps.61.133401
    [12] 李勇军, 冯灏, 孙卫国, 曾阳阳, 王小炼, 李会东, 樊群超. 基于严格交换势的低能电子与H2分子碰撞振动激发散射截面的研究.  , 2011, 60(4): 043401. doi: 10.7498/aps.60.043401
    [13] 高瑞军, 葛自明. 共面不对称条件下Ar原子(e, 2e)反应的三重微分截面.  , 2010, 59(3): 1702-1706. doi: 10.7498/aps.59.1702
    [14] 王悦, 董德智, 李伟艳, 凤尔银, 崔执凤. He-Na2体系低温下的冷碰撞研究.  , 2009, 58(10): 6913-6919. doi: 10.7498/aps.58.6913
    [15] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究.  , 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [16] 施德恒, 孙金锋, 朱遵略, 杨向东, 刘玉芳, 马 恒. 中、高能电子被SO2分子散射的微分截面、动量转移截面及弹性积分截面.  , 2007, 56(8): 4435-4440. doi: 10.7498/aps.56.4435
    [17] 施德恒, 孙金锋, 朱遵略, 刘玉芳, 杨向东. 中高能电子被O2及CF4分子散射的微分截面、弹性积分截面及动量转移截面.  , 2005, 54(8): 3548-3553. doi: 10.7498/aps.54.3548
    [18] 白丽华, 张庆刚, 刘新国. D+CD4→CD3+D2反应的四维量子散射计算.  , 2003, 52(11): 2774-2780. doi: 10.7498/aps.52.2774
    [19] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究.  , 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
    [20] 贾祥富, 施启存, 陈长进, 陈 激, 徐克尊. 低能电子碰撞He+(e,2e)反应绝对三重微分截面的理论研究.  , 1998, 47(3): 411-418. doi: 10.7498/aps.47.411
计量
  • 文章访问数:  5711
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-05
  • 修回日期:  2014-10-17
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map