搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位型三头薛定谔猫态的量子统计属性

林惇庆 朱泽群 王祖俭 徐学翔

引用本文:
Citation:

相位型三头薛定谔猫态的量子统计属性

林惇庆, 朱泽群, 王祖俭, 徐学翔

Quantum statistical properties of phase-type three-headed Schrodinger cat state

Lin Dun-Qing, Zhu Ze-Qun, Wang Zu-Jian, Xu Xue-Xiang
PDF
导出引用
  • 本文详细研究了一种相位型三头薛定谔猫态的一些量子统计属性,包括光子数分布、平均光子数、亚泊松分布、压缩效应以及Wigner函数等.我们发现,三头猫态的Wigner函数都可以出现负值,与二、四头猫态一样,说明它们都可以体现出非经典特性.与二头猫态不同,三头猫态在一定参数范围内可以呈现亚泊松分布,这点与四头猫态相类似,但弱于四头猫态.另外,三头猫态和四头猫态都没有压缩属性,但二头猫态具有压缩属性.
    Quantum superposition is a fundamental principle of quantum mechanics, which provides a crucial basis to observe phenomena beyond the predictions of classical physics. For example, a quantum entangled state can exhibit stronger correlation than classically possible one. In quantum state engineering, many new quantum states can be obtained from the superposition of many known states. In recent decades, the superposition of coherent states (CSs) with the same amplitude but two different phases has been a subject of great interest. This superposition state was often called Schrodinger cat state (here, we also name it 2-headed cat state (2HCS)), which becomes an important tool to study a lot of fundamental issues. Surprisingly, some studies have extended the quantum superposition to involving more than two component coherent states. In order to produce the superposition of three photons, people have considered the superposition of coherent states with three different phases (here, we also name it 3-headed cat state (3HCS)). Furthermore, in microwave cavity quantum electrodynamics of bang-bang quantum Zeno dynamics control, people have proposed the superposition of coherent states with four different phases (here, we also name it 4-headed cat state (4HCS)). In this paper, we make a detailed investigation on the quantum statistical properties of a phase-type 3HCS. These properties include photon number distribution, average photon number, sub-Poissionian distribution, squeezing effect, and Wigner function, etc. We derive their analytical expressions and make numerical simulations for these properties. The results are compared with the counterparts of the CS, the 2HCS and the 4HCS. The conclusions are obtained as follows. 1) The CS, the 2HCS, the 3HCS and the 4HCS have k, 2k, 3k and 4k photon number components, respectively (k is an integer); 2) small difference in average photon number among these quantum states in small-amplitude range can be observed, while their average photon numbers become almost equal in large-amplitude range; 3) the CS exhibits Poisson distribution, and the 2HCS, the 3HCS and the 4HCS exhibit super-Poisson distributions in most amplitude ranges, however, sub-Poisson distribution can be seen for the 3HCS and the 4HCS in some specific amplitude ranges; 4) except for the 2HCS that may have the squeezing property, no squeezing properties can be found in the CS, the 3HCS and the 4HCS; 5) negative values can exist in the Wigner functions for the 2HCS, the 3HCS and the 4HCS, while it is not found in the CS. Similar to the 2HCS and 4HCS, the Wigner function of the 3HCS has negative component, which implies its nonclassicality. Different from the 2HCS, the 3HCS exhibits sub-Poisson photon number distribution in a certain amplitude range, it is weaker than that of the 4HCS. At the same time, no squeezing is found in the 3 or 4HCS, which is another difference from the 2HCS.
      通信作者: 徐学翔, xuxuexiang@jxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11665013)、江西省高等学校教学改革研究课题(批准号:JXJG-16-2-2)和江西师范大学团队高原计划项目资助的课题.
      Corresponding author: Xu Xue-Xiang, xuxuexiang@jxnu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11665013), Research on Teaching Reform of Jiangxi Higher Education, China (Grant No. JXJG-16-2-2) and the Gaoyuan Plan Project of Jiangxi Normal University, China.
    [1]

    Dirac P A M 1958 The Principles of Quantum Mechanics (4th Ed.) (Oxford: Oxford University Press) pp1-22

    [2]

    Zeng J Y 2007 Quantum Mechanics (4th Ed.) (Beijing: Science Press) pp52-54 [曾谨言 2007 量子力学(第四版) (北京: 科学出版社)] pp52-54

    [3]

    Dell'Anno F, de Siena S, Illuminati F 2006 Phys. Rep. 428 53

    [4]

    Kok P, Lovett B W 2010 Introduction to Optical Quantum Information Processing (Cambridge: Cambridge University Press) pp183-187

    [5]

    Polkinghorne J C 1985 The Quantum World (Princeton: Princeton University Press) p67

    [6]

    John G 2011 In Search of Schrodinger's Cat: Quantum Physics and Reality (Berlin: Random House Publishing Group) pp234

    [7]

    Glauber R J 1963 Phys. Rev. 131 2766

    [8]

    Gerry C C, Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press) pp174-181

    [9]

    Yukawa M, Miyata K, Mizuta T, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Opt. Express 21 5529

    [10]

    Vlastakis B, Kirchmair G, Leghtas Z, Nigg S E, Frunzio L, Girvin S M, Mirrahimi M, Devoret M H, Schoelkopf R J 2013 Science 342 607

    [11]

    Raimond J M, Facchi P, Peaudecerf B, Pascazio S, Sayrin C, Dotsenko I, Gleyzes S, Brune M, Haroche S 2012 Phys. Rev. A 86 032120

    [12]

    Lee S Y, Lee C W, Nha H, Kaszlikowski D 2015 J. Opt. Soc. Am. B 32 1186

    [13]

    Mandel L 1979 Opt. Lett. 4 205

    [14]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) pp81-82

    [15]

    Wigner E P 1932 Phys. Rev. 40 749

    [16]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661

    [17]

    Xu X X, Yuan H C 2016 Phys. Lett. A 380 2342

    [18]

    Lutterbach L, Davidovich L 1997 Phys. Rev. Lett. 78 2547

    [19]

    Kenfack A, Zyczkowski K 2004 J. Opt. B: Quantum Semi-Class. Opt. 6 396

    [20]

    Gerry C C, Mimih J 2010 Contemp. Phys. 51 497

    [21]

    Leghtas Z, Kirchmair G, Vlastakis B, Schoelkopf R J, Devorett M H, Mirrahimi M 2013 Phys. Rev. Lett. 111 120501

    [22]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

  • [1]

    Dirac P A M 1958 The Principles of Quantum Mechanics (4th Ed.) (Oxford: Oxford University Press) pp1-22

    [2]

    Zeng J Y 2007 Quantum Mechanics (4th Ed.) (Beijing: Science Press) pp52-54 [曾谨言 2007 量子力学(第四版) (北京: 科学出版社)] pp52-54

    [3]

    Dell'Anno F, de Siena S, Illuminati F 2006 Phys. Rep. 428 53

    [4]

    Kok P, Lovett B W 2010 Introduction to Optical Quantum Information Processing (Cambridge: Cambridge University Press) pp183-187

    [5]

    Polkinghorne J C 1985 The Quantum World (Princeton: Princeton University Press) p67

    [6]

    John G 2011 In Search of Schrodinger's Cat: Quantum Physics and Reality (Berlin: Random House Publishing Group) pp234

    [7]

    Glauber R J 1963 Phys. Rev. 131 2766

    [8]

    Gerry C C, Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press) pp174-181

    [9]

    Yukawa M, Miyata K, Mizuta T, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Opt. Express 21 5529

    [10]

    Vlastakis B, Kirchmair G, Leghtas Z, Nigg S E, Frunzio L, Girvin S M, Mirrahimi M, Devoret M H, Schoelkopf R J 2013 Science 342 607

    [11]

    Raimond J M, Facchi P, Peaudecerf B, Pascazio S, Sayrin C, Dotsenko I, Gleyzes S, Brune M, Haroche S 2012 Phys. Rev. A 86 032120

    [12]

    Lee S Y, Lee C W, Nha H, Kaszlikowski D 2015 J. Opt. Soc. Am. B 32 1186

    [13]

    Mandel L 1979 Opt. Lett. 4 205

    [14]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) pp81-82

    [15]

    Wigner E P 1932 Phys. Rev. 40 749

    [16]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661

    [17]

    Xu X X, Yuan H C 2016 Phys. Lett. A 380 2342

    [18]

    Lutterbach L, Davidovich L 1997 Phys. Rev. Lett. 78 2547

    [19]

    Kenfack A, Zyczkowski K 2004 J. Opt. B: Quantum Semi-Class. Opt. 6 396

    [20]

    Gerry C C, Mimih J 2010 Contemp. Phys. 51 497

    [21]

    Leghtas Z, Kirchmair G, Vlastakis B, Schoelkopf R J, Devorett M H, Mirrahimi M 2013 Phys. Rev. Lett. 111 120501

    [22]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析.  , 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [2] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量.  , 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [3] 张娜娜, 李淑静, 闫红梅, 何亚亚, 王海. 实验条件不完美对薛定谔猫态制备的影响.  , 2018, 67(23): 234203. doi: 10.7498/aps.67.20180381
    [4] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系.  , 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [5] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [6] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干.  , 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [7] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉.  , 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [8] 文洪燕, 杨杨, 韦联福. 光学微腔中少光子数叠加态的耗散动力学.  , 2012, 61(18): 184206. doi: 10.7498/aps.61.184206
    [9] 袁洪春, 徐学翔. 单双模连续压缩真空态及其量子统计性质.  , 2012, 61(6): 064205. doi: 10.7498/aps.61.064205
    [10] 宋军, 范洪义, 周军. 双模压缩数态光场的Wigner函数及其特性.  , 2011, 60(11): 110302. doi: 10.7498/aps.60.110302
    [11] 余海军, 杜建明, 张秀兰. 一类特殊单模压缩态的Wigner函数.  , 2011, 60(9): 090305. doi: 10.7498/aps.60.090305
    [12] 徐学翔, 袁洪春, 胡利云. 广义压缩粒子数态的非经典性质及其退相干.  , 2010, 59(7): 4661-4671. doi: 10.7498/aps.59.4661
    [13] 宋军, 范洪义. Schwinger Bose实现下自旋相干态Wigner函数的特性分析.  , 2010, 59(10): 6806-6813. doi: 10.7498/aps.59.6806
    [14] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数.  , 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [15] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数.  , 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [16] 杨庆怡, 孙敬文, 韦联福, 丁良恩. 增、减光子奇偶相干态的Wigner函数.  , 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
    [17] 张智明. 利用微脉塞重构腔场的Wigner函数.  , 2004, 53(1): 70-74. doi: 10.7498/aps.53.70
    [18] 嵇英华, 罗海梅, 叶志清, 吴云翼, 陈明玉. 利用介观LC电路制备薛定谔猫态.  , 2004, 53(8): 2534-2538. doi: 10.7498/aps.53.2534
    [19] 董传华. 原子薛定谔猫态中角动量的压缩及其时间演化.  , 2003, 52(2): 337-344. doi: 10.7498/aps.52.337
    [20] 刘 翔, 方卯发, 刘安玲. 光场与级联三能级原子相互作用时的熵特性和薛定谔猫态.  , 2000, 49(9): 1706-1713. doi: 10.7498/aps.49.1706
计量
  • 文章访问数:  6227
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-25
  • 修回日期:  2017-03-08
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map