搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无噪线性放大的连续变量量子隐形传态

文镇南 易有根 徐效文 郭迎

引用本文:
Citation:

无噪线性放大的连续变量量子隐形传态

文镇南, 易有根, 徐效文, 郭迎

Continuous variable quantum teleportation with noiseless linear amplifier

Wen Zhen-Nan, Yi You-Gen, Xu Xiao-Wen, Guo Ying
PDF
HTML
导出引用
  • 连续变量量子隐形传态在实际的量子通信中起着至关重要的作用. 然而, 实际环境的噪声与损耗会导致量子纠缠的退化, 极大地影响系统的传输性能, 尤其是降低系统的传输距离, 阻碍其实际应用. 本文提出了无噪线性放大的连续变量量子隐形传态方案, 利用无噪线性放大器对退化的纠缠源进行放大, 从而补偿光纤损耗信道对纠缠源的衰减影响, 提升系统的性能. 本文详细分析了不同损耗信道和纠缠源情况下, 无噪线性放大器的增益系数选取范围以及不同增益对方案性能的影响. 仿真结果表明, 本文提出的方案相比于原方案, 在保真度和传输距离方面都有较大的提升. 该研究结果为长距离连续变量量子隐形传态的实际应用提供了一种切实有效的方法.
    Continuous variable quantum teleportation (CVQT) plays an important role in practical quantum communication. However, the noise and loss in the actual environment will lead to the degradation of entanglement, which has an effect on the performance of the system in terms of the transmission distance and hence hinders its implementations. In this paper, we suggest an approach to improving the performance of the CVQT system with an embedded noiseless linear amplifier (NLA). By using the NLA, one can amplify the degenerated entangled source to compensate for the attenuation of the fiber. Then we consider the influences of the available gains of the NLA on the performance of the proposed scheme under different lossy channels and entangled sources. The simulation results show that the performance is improved in fidelity and transmission distance, which may provide a feasible and effective method of putting the long-distance CVQT into practical application .
      通信作者: 徐效文, xuxiaowen@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61871407)和广西无线宽带通信与信号处理重点实验室开放基金(批准号: GXKL06200208)资助的课题.
      Corresponding author: Xu Xiao-Wen, xuxiaowen@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871407), and the Open Fund of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China (Grant No. GXKL06200208).
    [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [3]

    Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 230501Google Scholar

    [4]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869Google Scholar

    [5]

    Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330Google Scholar

    [6]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [7]

    Marcikic I, De Riedmatten H, Tittel W, Zbinden H, Gisin N 2003 Nature 421 509Google Scholar

    [8]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185Google Scholar

    [9]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70Google Scholar

    [10]

    Vaidman L 1994 Phys. Rev. A 49 1473Google Scholar

    [11]

    Ralph T C, Lam P K 1998 Phys. Rev. Lett. 81 5668Google Scholar

    [12]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [13]

    Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T, Lam P K 2003 Phys. Rev. A 67 032302Google Scholar

    [14]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar

    [15]

    Takei N, Aoki T, Koike S, Yoshino K I, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeoka M, Ban M, Furusawa A 2005 Phys. Rev. A 72 042304Google Scholar

    [16]

    Takei N, Yonezawa H, Aoki T, Furusawa A 2005 Phys. Rev. Lett. 94 220502Google Scholar

    [17]

    Dell’Anno F, De Siena S, Albano L, Illuminati F 2007 Phys. Rev. A 76 022301Google Scholar

    [18]

    Dell’Anno F, De Siena S, Illuminati F 2010 Phys. Rev. A 81 012333Google Scholar

    [19]

    He G Q, Zhang J T, Zhu J, Zeng G H 2011 Phys. Rev. A 84 034305Google Scholar

    [20]

    Hu L Y, Liao Z Y, Ma S L, Zubairy M S 2016 Phys. Rev. A 93 033807Google Scholar

    [21]

    Hofmann K, Semenov A A, Vogel W, Bohmann M 2019 Phys. Scr. 94 125104Google Scholar

    [22]

    Zuo Z Y, Wang Y J, Liao Q, Guo Y 2021 Phys. Rev. A 104 022615Google Scholar

    [23]

    Villaseñor E, He M J, Wang Z Q, Malaney R, Win M Z 2021 IEEE Trans. Quantum Eng. 2 4102118Google Scholar

    [24]

    Liu S H, Lou Y B, Jing J T 2020 Nat. Commun. 11 3875

    [25]

    Chen X, Ou Z Y 2020 Phys. Rev. A 102 032407Google Scholar

    [26]

    Asjad M, Qasymeh M, Eleuch H 2021 Phys. Rev. Appl. 16 034046Google Scholar

    [27]

    Fedorov K G, Renger M, Pogorzalek S, Di Candia R, Chen Q M, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F 2021 Sci. Adv. 7 eabk0891Google Scholar

    [28]

    Zhao H, Feng J X, Sun J K, Li Y J, Zhang K S 2022 Opt. Express 30 3770Google Scholar

    [29]

    Braunstein S L, Fuchs C A, Kimble H J 2000 J. Mod. Opt. 47 267Google Scholar

    [30]

    Fiurášek J 2002 Phys. Rev. A 66 012304Google Scholar

    [31]

    Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P, Tualle-Brouri R 2012 Phys. Rev. A 86 012327Google Scholar

    [32]

    Bai D B, Huang P, Ma H X, Wang T, Zeng G H 2017 Entropy 19 546Google Scholar

    [33]

    Zhang Y C, Li Z Y, Weedbrook C, Marshall K, Pirandola S, Yu S, Guo H 2015 Entropy 17 4547Google Scholar

    [34]

    Bohmann M, Semenov A A, Sperling J, Vogel W 2001 Phys. Rev. A 94 010302

    [35]

    Braunstein S L, Fuchs C A, Kimble H J, van Loock P 2001 Phys. Rev. A 64 022321

  • 图 1  无噪线性放大CVQT方案示意图. 纠缠源EPR态由第三方Charlie制备, 模A0B0分别经过光纤损耗信道传输至Alice和Bob端, Alice和Bob利用无噪线性放大器对接收模进行放大. LO, 本振光; BS, 分束器; g, 无噪线性放大器增益系数

    Fig. 1.  Schematic of the NLA-based CVQT scheme. The entangled source EPR state is prepared by the third party Charlie. The modes A0 and B0 are transmitted to Alice and Bob through the fiber lossy channel. At the receiver , Alice and Bob use noiseless linear amplifiers for performance improvement. LO, local oscillator; BS, beam splitter; g, gain of NLA.

    图 2  不同损耗信道中NLA增益系数随传输距离的变化关系

    Fig. 2.  The gain coefficient of NLA versus the transmission distance in different lossy channels.

    图 3  单边损耗信道情况下保真度随传输距离的变化关系 (a) EPR态参数$ \lambda =0.5 $, 对应NLA增益系数$ g\in \left\{2.3,  2.0,  1.7\right\} $; (b) EPR态参数$ \lambda =0.7 $, 对应NLA增益系数$ g\in \left\{1.5,  1.3,  1.1\right\} $

    Fig. 3.  The fidelity versus the transmission distance in single lossy channel case: (a) The EPR parameter $ \lambda =0.5 $, the gain of NLA $ g\in \left\{2.3,  2.0,  1.7\right\} $; (b) the EPR parameter $ \lambda =0.7 $, the gain of NLA $ g\in \left\{1.5,  1.3,  1.1\right\} $.

    图 4  对称损耗信道情况下保真度随传输距离的变化关系 (a) EPR态参数$ \lambda =0.5 $, 对应NLA增益系数$ g\in \left\{1.8,  1.5,  1.2\right\} $; (b) EPR态参数$ \lambda =0.7 $, 对应NLA增益系数$ g\in \left\{1.4,  1.3,  1.2\right\} $.

    Fig. 4.  The fidelity versus the transmission distance in symmetrical lossy channel case: (a) The EPR parameter $ \lambda =0.5 $, the gain of NLA $ g\in \left\{1.8,  1.5,  1.2\right\} $; (b) the EPR parameter $ \lambda =0.7 $, the gain of NLA $ g\in \left\{1.4,  1.3,  1.2\right\} $.

    图 5  对称损耗信道情况下输入态与输出态的特征函数分布 (a) 输入态特征函数; (b) NLA方案输出态特征函数; (c) 原始方案输出态特征函数; (d) 输入态与输出态的特征函数关于X-P平面投影

    Fig. 5.  Characteristic functions of input state and output state in symmetrical lossy channel case: (a) Characteristic function of input state; (b) characteristic function of output state with NLA; (c) characteristic function of output state without NLA; (d) projection of characteristic functions of input state and output state on X-P plane.

    Baidu
  • [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [3]

    Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 230501Google Scholar

    [4]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869Google Scholar

    [5]

    Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330Google Scholar

    [6]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [7]

    Marcikic I, De Riedmatten H, Tittel W, Zbinden H, Gisin N 2003 Nature 421 509Google Scholar

    [8]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185Google Scholar

    [9]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70Google Scholar

    [10]

    Vaidman L 1994 Phys. Rev. A 49 1473Google Scholar

    [11]

    Ralph T C, Lam P K 1998 Phys. Rev. Lett. 81 5668Google Scholar

    [12]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [13]

    Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T, Lam P K 2003 Phys. Rev. A 67 032302Google Scholar

    [14]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar

    [15]

    Takei N, Aoki T, Koike S, Yoshino K I, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeoka M, Ban M, Furusawa A 2005 Phys. Rev. A 72 042304Google Scholar

    [16]

    Takei N, Yonezawa H, Aoki T, Furusawa A 2005 Phys. Rev. Lett. 94 220502Google Scholar

    [17]

    Dell’Anno F, De Siena S, Albano L, Illuminati F 2007 Phys. Rev. A 76 022301Google Scholar

    [18]

    Dell’Anno F, De Siena S, Illuminati F 2010 Phys. Rev. A 81 012333Google Scholar

    [19]

    He G Q, Zhang J T, Zhu J, Zeng G H 2011 Phys. Rev. A 84 034305Google Scholar

    [20]

    Hu L Y, Liao Z Y, Ma S L, Zubairy M S 2016 Phys. Rev. A 93 033807Google Scholar

    [21]

    Hofmann K, Semenov A A, Vogel W, Bohmann M 2019 Phys. Scr. 94 125104Google Scholar

    [22]

    Zuo Z Y, Wang Y J, Liao Q, Guo Y 2021 Phys. Rev. A 104 022615Google Scholar

    [23]

    Villaseñor E, He M J, Wang Z Q, Malaney R, Win M Z 2021 IEEE Trans. Quantum Eng. 2 4102118Google Scholar

    [24]

    Liu S H, Lou Y B, Jing J T 2020 Nat. Commun. 11 3875

    [25]

    Chen X, Ou Z Y 2020 Phys. Rev. A 102 032407Google Scholar

    [26]

    Asjad M, Qasymeh M, Eleuch H 2021 Phys. Rev. Appl. 16 034046Google Scholar

    [27]

    Fedorov K G, Renger M, Pogorzalek S, Di Candia R, Chen Q M, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F 2021 Sci. Adv. 7 eabk0891Google Scholar

    [28]

    Zhao H, Feng J X, Sun J K, Li Y J, Zhang K S 2022 Opt. Express 30 3770Google Scholar

    [29]

    Braunstein S L, Fuchs C A, Kimble H J 2000 J. Mod. Opt. 47 267Google Scholar

    [30]

    Fiurášek J 2002 Phys. Rev. A 66 012304Google Scholar

    [31]

    Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P, Tualle-Brouri R 2012 Phys. Rev. A 86 012327Google Scholar

    [32]

    Bai D B, Huang P, Ma H X, Wang T, Zeng G H 2017 Entropy 19 546Google Scholar

    [33]

    Zhang Y C, Li Z Y, Weedbrook C, Marshall K, Pirandola S, Yu S, Guo H 2015 Entropy 17 4547Google Scholar

    [34]

    Bohmann M, Semenov A A, Sperling J, Vogel W 2001 Phys. Rev. A 94 010302

    [35]

    Braunstein S L, Fuchs C A, Kimble H J, van Loock P 2001 Phys. Rev. A 64 022321

  • [1] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案.  , 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析.  , 2024, 73(23): . doi: 10.7498/aps.20241094
    [3] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析.  , 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [4] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案.  , 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [5] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展.  , 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [6] 钟海, 叶炜, 吴晓东, 郭迎. 基于光前置放大器的量子密钥分发融合经典通信方案.  , 2021, 70(2): 020301. doi: 10.7498/aps.70.20200855
    [7] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案.  , 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [8] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发.  , 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [9] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠.  , 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [10] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [11] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [12] 丁东, 闫凤利. 基于弱非线性实现量子信息签名.  , 2013, 62(1): 010302. doi: 10.7498/aps.62.010302
    [13] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离.  , 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [14] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态.  , 2012, 61(1): 014206. doi: 10.7498/aps.61.014206
    [15] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议.  , 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [16] 何锐, Bing He. 量子隐形传态的新方案.  , 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [17] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法.  , 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [18] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度.  , 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [19] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响.  , 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态.  , 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
计量
  • 文章访问数:  3728
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-18
  • 修回日期:  2022-02-19
  • 上网日期:  2022-06-19
  • 刊出日期:  2022-07-05

/

返回文章
返回
Baidu
map