Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reflective Ni/Ag/Ti/Au electrode with low specific contact resistivity

Wei Zheng-Hong Yun Feng Ding Wen Huang Ya-Ping Wang Hong Li Qiang Zhang Ye Guo Mao-Feng Liu Shuo Wu Hong-Bin

Citation:

Reflective Ni/Ag/Ti/Au electrode with low specific contact resistivity

Wei Zheng-Hong, Yun Feng, Ding Wen, Huang Ya-Ping, Wang Hong, Li Qiang, Zhang Ye, Guo Mao-Feng, Liu Shuo, Wu Hong-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The specific contact resistivity and reflectivity of Ni/Ag/Ti/Au contact with p-GaN are studied. It is found that the thickness of Ag, anneal time and deposition temperature have a great effect on the performance of Ni/Ag/Ti/Au electrode. Its optical reflectivity is measured by reflectivity spectrophotometer, and its specific contact resistivity is calculated by circular transmission line model. It is observed that the contact reflectivity values of Ni (1 nm)/Ag/Ti (100 nm)/Au (100 nm), when the thickness values of Ag are 25 nm and 50 nm, are low: their values are 68.5% and 82.1% at 450 nm, respectively, and they start to increase with increasing the Ag thickness, then reach their saturated values when Ag thickness is beyond 200 nm. When the anneal time changes from 1 min to 10 min in oxygen atmosphere, the specific contact resistivity decreases at 300 ℃, decreases further and then increases at 400-600 ℃. After annealing at temperatures at 300 ℃ and 400 ℃ in oxygen atmosphere, the contact reflectivity value of Ni/Ag/Ti/Au remains almost unchanged, even when anneal time increases from 1 min to 10 min. However, The contact reflectivity of Ni/Ag/Ti/Au decreases significantly after annealing at a temperature higher than 400 ℃ and it becomes smaller with longer annealing time. After 400 ℃ annealing in oxygen atmosphere for 3 min, the specific contact resistivity reaches 3.6×10-3 Ω·cm2. Additionally, the deposition temperature of Ni/Ag is investigated. It is noticed that the specific contact resistivity decreases and the reflectivity increases with increasing the deposition temperature from room temperature to 120 ℃. The reflectivity rises to 90.1% at 450 nm and the specific contact resistivity reaches 6.4×10-3Ω·cm2 for the Ni/Ag/Ti/Au electrode at a deposition temperature of 120 ℃. However, the effects of improving the electrical and optical characteristics weaken when deposition temperature changes from 120 ℃ to 140 ℃. With a overall consideration, Ni (1 nm)/Ag (200 nm)/Ti (100 nm)/Au (100 nm) is made at a deposition temperature of 120 ℃, and then anneals at 400 ℃ for 3 min in oxygen atmosphere to achieve the optimized electrode. The vertical light emitting diode with this Ni/Ag/Ti/Au electrode is fabricated. Its working voltage is 2.95 V and the light output power is 387.1 mW at 350 mA. The electro-optical conversion efficiency reaches 37.5%.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032608).
    [1]

    Greco G, Prystawko P, Leszczynski M, Nigro R L, Raineri V, Roccaforte F 2011 J. Appl. Phys. 110 123703

    [2]

    Lin D W, Lee C Y, Liu C Y, Han H V, Lan Y P, Lin C C, Chi G C, Kuo H C 2012 Appl. Phys. Lett. 101 233104

    [3]

    Xiong J Y, Zhao F, Fan G H, Xu Y Q, Liu X P, Song J J, Ding B B, Zhang T, Zheng S W 2013 Chin. Phys. B 22 118504

    [4]

    Yang B, Guo Z Y, Xie N, Zhang P J, Li J, Li F Z, Lin H, Zheng H, Cai J X 2014 Chin. Phys. B 23 048502

    [5]

    Kim H, Kim K K, Choi K K, Kim H, Song J O, Cho J, Baik K H, Sone C, Park Y, Seong T Y 2007 Appl. Phys. Lett. 91 023510

    [6]

    Jeon J W, Seong T Y, Kim H, Kim K K 2009 Appl. Phys. Lett. 94 042102

    [7]

    Feng F F, Liu J L, Qiu C, Wang G X, Jiang F Y 2010 Acta Phys. Sin. 59 5706 (in Chinese) [封飞飞, 刘军林, 邱冲, 王光绪, 江风益 2010 59 5706]

    [8]

    Liu J L, Feng F F, Zhou Y H, Zhang J L, Jiang F Y 2011 Appl. Phys. Lett. 99 111112

    [9]

    Magdenko L, Patriarche G, Troadec D, Mauguin O, Morvan E, di Forte-Poisson M A, Pantzas K, Ougazzaden A, Martinez A, Ramdane A 2012 J. Vac. Sci. Technol. B 30 022205

    [10]

    Guo D B, Liang M, Fan M N, Shi H W, Liu Z Q, Wang G H, Wang L C 2007 Chin. J. Semiconductors 28 1811 (in Chinese) [郭德博, 梁萌, 范曼宁, 师宏伟, 刘志强, 王国宏, 王良臣 2007 半导体学报 28 1811]

    [11]

    Jeon J W, Yum W S, Oh S, Kim K K, Seong T Y 2012 Appl. Phys. Lett. 101 021115

    [12]

    Huang Y P, Yun F, Ding W, Wang Y, Wang H, Zhao Y K, Zhang Y, Guo M F, Hou X, Liu S 2014 Acta Phys. Sin. 63 127302 (in Chinese) [黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕 2014 63 127302]

    [13]

    Julita S K, Szymon G, Elzbieta L S, Ryszard P, Grzegorz N, Michal L, Piotr P, Ewa T, Jan K, Stanislaw K 2010 Solid State Electron. 54 701

    [14]

    Qiao D, Yu L S, Lau S S, Lin J Y, Jiang H X, Haynes T E 2000 J. Appl. Phys. 88 4196

    [15]

    Chary I, Chandolu A, Borisov B, Kuryatkov V, Nikishin S, Holtz M 2009 J. Electron. Mater. 38 545

    [16]

    Jiang F, Cai L E, Zhang J Y, Zhang B P 2010 Physica E 42 2420

    [17]

    Jang H W, Lee J L 2004 Appl. Phys. Lett. 85 5920

    [18]

    Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014 J. Phys. D: Appl. Phys. 47 115102

    [19]

    Mashaiekhy J, Shafieizadeh Z, Nahidi H 2012 Eur. Phys. J. Appl. Phys. 60 20301

    [20]

    Song Y H, Son J H, Yu H K, Lee J H, Jung G H, Lee J Y, Lee J L 2011 Cryst. Growth Des. 11 2559

    [21]

    Kim S, Jang J H, Lee J S 2007 J. Electrochem. Soc. 154 973

    [22]

    Son J H, Yu H K, Song Y H, Kim B J, Lee J L 2011 Cryst. Growth Des. 11 4943

    [23]

    Chou C H, Lin C L, Chuang Y C, Bor H Y, Liu C Y 2007 Appl. Phys. Lett. 90 022103

  • [1]

    Greco G, Prystawko P, Leszczynski M, Nigro R L, Raineri V, Roccaforte F 2011 J. Appl. Phys. 110 123703

    [2]

    Lin D W, Lee C Y, Liu C Y, Han H V, Lan Y P, Lin C C, Chi G C, Kuo H C 2012 Appl. Phys. Lett. 101 233104

    [3]

    Xiong J Y, Zhao F, Fan G H, Xu Y Q, Liu X P, Song J J, Ding B B, Zhang T, Zheng S W 2013 Chin. Phys. B 22 118504

    [4]

    Yang B, Guo Z Y, Xie N, Zhang P J, Li J, Li F Z, Lin H, Zheng H, Cai J X 2014 Chin. Phys. B 23 048502

    [5]

    Kim H, Kim K K, Choi K K, Kim H, Song J O, Cho J, Baik K H, Sone C, Park Y, Seong T Y 2007 Appl. Phys. Lett. 91 023510

    [6]

    Jeon J W, Seong T Y, Kim H, Kim K K 2009 Appl. Phys. Lett. 94 042102

    [7]

    Feng F F, Liu J L, Qiu C, Wang G X, Jiang F Y 2010 Acta Phys. Sin. 59 5706 (in Chinese) [封飞飞, 刘军林, 邱冲, 王光绪, 江风益 2010 59 5706]

    [8]

    Liu J L, Feng F F, Zhou Y H, Zhang J L, Jiang F Y 2011 Appl. Phys. Lett. 99 111112

    [9]

    Magdenko L, Patriarche G, Troadec D, Mauguin O, Morvan E, di Forte-Poisson M A, Pantzas K, Ougazzaden A, Martinez A, Ramdane A 2012 J. Vac. Sci. Technol. B 30 022205

    [10]

    Guo D B, Liang M, Fan M N, Shi H W, Liu Z Q, Wang G H, Wang L C 2007 Chin. J. Semiconductors 28 1811 (in Chinese) [郭德博, 梁萌, 范曼宁, 师宏伟, 刘志强, 王国宏, 王良臣 2007 半导体学报 28 1811]

    [11]

    Jeon J W, Yum W S, Oh S, Kim K K, Seong T Y 2012 Appl. Phys. Lett. 101 021115

    [12]

    Huang Y P, Yun F, Ding W, Wang Y, Wang H, Zhao Y K, Zhang Y, Guo M F, Hou X, Liu S 2014 Acta Phys. Sin. 63 127302 (in Chinese) [黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕 2014 63 127302]

    [13]

    Julita S K, Szymon G, Elzbieta L S, Ryszard P, Grzegorz N, Michal L, Piotr P, Ewa T, Jan K, Stanislaw K 2010 Solid State Electron. 54 701

    [14]

    Qiao D, Yu L S, Lau S S, Lin J Y, Jiang H X, Haynes T E 2000 J. Appl. Phys. 88 4196

    [15]

    Chary I, Chandolu A, Borisov B, Kuryatkov V, Nikishin S, Holtz M 2009 J. Electron. Mater. 38 545

    [16]

    Jiang F, Cai L E, Zhang J Y, Zhang B P 2010 Physica E 42 2420

    [17]

    Jang H W, Lee J L 2004 Appl. Phys. Lett. 85 5920

    [18]

    Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014 J. Phys. D: Appl. Phys. 47 115102

    [19]

    Mashaiekhy J, Shafieizadeh Z, Nahidi H 2012 Eur. Phys. J. Appl. Phys. 60 20301

    [20]

    Song Y H, Son J H, Yu H K, Lee J H, Jung G H, Lee J Y, Lee J L 2011 Cryst. Growth Des. 11 2559

    [21]

    Kim S, Jang J H, Lee J S 2007 J. Electrochem. Soc. 154 973

    [22]

    Son J H, Yu H K, Song Y H, Kim B J, Lee J L 2011 Cryst. Growth Des. 11 4943

    [23]

    Chou C H, Lin C L, Chuang Y C, Bor H Y, Liu C Y 2007 Appl. Phys. Lett. 90 022103

  • [1] Tang Jia-Xin, Li Zhan-Hai, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction. Acta Physica Sinica, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [2] Wang Su-Jie, Li Shu-Qiang, Wu Xiao-Ming, Chen Fang, Jiang Feng-Yi. Study on the effect of thermal annealing process on ohmic contact performance of AuGeNi/n-AlGaInP. Acta Physica Sinica, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [3] He Tian-Li, Wei Hong-Yuan, Li Cheng-Ming, Li Geng-Wei. Comparative study of n-GaN transition group refractory metal Ohmic electrode. Acta Physica Sinica, 2019, 68(20): 206101. doi: 10.7498/aps.68.20190717
    [4] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun, Zhao Ming-Jie. Improved performance of Al/n+Ge Ohmic contact andGe n+/p diode by two-step annealing method. Acta Physica Sinica, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [5] Tang Wen-Xin, Hao Rong-Hui, Chen Fu, Yu Guo-Hao, Zhang Bao-Shun. p-GaN hybrid anode AlGaN/GaN diode with 1000 V operation. Acta Physica Sinica, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [6] Zhu Yan-Xu, Cao Wei-Wei, Xu Chen, Deng Ye, Zou De-Shu. Effect of different ohmic contact pattern on GaN HEMT electrical properties. Acta Physica Sinica, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [7] Huang Ya-Ping, Yun Feng, Ding Wen, Wang Yue, Wang Hong, Zhao Yu-Kun, Zhang Ye, Guo Mao-Feng, Hou Xun, Liu Shuo. The reflectivity and ohmic contact resistivity of Ni/Ag/Ti/Au in contact with p-GaN. Acta Physica Sinica, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [8] Li Xiao-Jing, Zhao De-Gang, He Xiao-Guang, Wu Liang-Liang, Li Liang, Yang Jing, Le Ling-Cong, Chen Ping, Liu Zong-Shun, Jiang De-Sheng. Influence of different annealing temperature and atmosphere on the Ni/Au Ohmic contact to p-GaN. Acta Physica Sinica, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [9] Wang Xiao-Yong, Chong Ming, Zhao De-Gang, Su Yan-Mei. Two-dimensional hole gas in p-GaN/p-AlxGa1-xN heterojunctions and its influence on Ohmic contact. Acta Physica Sinica, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [10] Pan Shu-Wan, Qi Dong-Feng, Chen Song-Yan, Li Cheng, Huang Wei, Lai Hong-Kai. Se ultrathin film growth on Si(100) substrate and its application in Ti/n-Si(100) ohmic contact. Acta Physica Sinica, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [11] Zhao De-Gang, Zhou Mei. A new method to measure the carrier concentration of p-GaN. Acta Physica Sinica, 2011, 60(3): 037804. doi: 10.7498/aps.60.037804
    [12] Wang Guang-Xu, Jiang Feng-Yi, Feng Fei-Fei, Liu Jun-Lin, Qiu Chong. N-polar n-type ohmic contact of GaN-based LED on Si substrate. Acta Physica Sinica, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [13] Liu Shi-Yuan, Gu Hua-Yong, Zhang Chuan-Wei, Shen Hong-Wei. A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation. Acta Physica Sinica, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [14] Lü Ling, Gong Xin, Hao Yue. Properties of p-type GaN etched by inductively coupled plasma and their improvement. Acta Physica Sinica, 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [15] Ding Zhi-Bo, Wang Kun, Chen Tian-Xiang, Chen Di, Yao Shu-De. Investigation on the formation mechanism and diffusion of the electrode metal of oxidized Au/Ni/p-GaN ohmic contact in different alloying time. Acta Physica Sinica, 2008, 57(4): 2445-2449. doi: 10.7498/aps.57.2445
    [16] Feng Su-Juan, Shang Liang, Mao Qing-He. Continuously adjusting the reflectivity of fiber loop mirror using a polarization controller. Acta Physica Sinica, 2007, 56(8): 4677-4685. doi: 10.7498/aps.56.4677
    [17] Wang Xiao-Hui, Lü Zhi-Wei, Lin Dian-Yang, Wang Chao, Tang Xiu-Zhang, Gong Kun, Shan Yu-Sheng. Stimulated Brillouin scattering reflection pumped by broadband KrF laser. Acta Physica Sinica, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [18] Sun Ke-Xu, Yi Rong-Qing, Yang Guo-Hong, Jiang Shao-En, Cui Yan-Li, Liu Shen-Ye, Ding Yong-Kun, Cui Ming-Qi, Zhu Pei-Ping, Zhao Yi-Dong, Zhu Jie, Zheng Lei, Zhang Jing-He. The reflectance calibration of soft x-ray planar mirror with different grazing angle. Acta Physica Sinica, 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [19] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
    [20] WANG YIN-YUE, ZHEN CONG-MIAN, GONG HENG-XIANG, YAN ZHI-JUN, WANG YA-FAN, LIU XUE-QIN, YANG YING-HU, HE SHAN-HU. MEASUREMENT OF THE SPECIFIC CONTACT RESISTANCE OF Au/Ti/p-DIAMOND USING TRANSMIS SION LINE MODEL. Acta Physica Sinica, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
Metrics
  • Abstract views:  5991
  • PDF Downloads:  213
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2014
  • Accepted Date:  18 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map