搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孕镶金刚石基底Co原子嵌入深度对金刚石涂层膜基界面结合强度的影响

简小刚 张婷婷 唐文杰

引用本文:
Citation:

孕镶金刚石基底Co原子嵌入深度对金刚石涂层膜基界面结合强度的影响

简小刚, 张婷婷, 唐文杰

The effect of Co atom embedding depth in impregnated diamond substrate on the interfacial adhesive strength with diamond coating

JIAN Xiaogang, ZHANG Tingting, TANG Wenjie
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 采用第一性原理方法,对孕镶金刚石基底表层Co原子不同嵌入深度时金刚石涂层膜基界面结合作用进行仿真计算分析,以探究基底中黏结相Co的嵌入深度对金刚石涂层膜基界面结合强度的影响。计算结果表明:膜基界面结合能随基底中Co嵌入深度的增加呈先降低后升高的趋势。当Co原子排列位于第三层时,涂层生长易出现明显的石墨结构,Co促金刚石石墨化作用最为显著,膜基界面结合强度达到最小值。分析结构及电荷发现,此时在表面效应及Co-C键键长的共同作用下基底第二层C移至表层,并由sp3杂化转变为sp2杂化,且C的移动导致Co与周围C原子的作用空间增大、作用数量增多,加之Co价层未配对电子较多,易与周围多个碳原子发生电子轨道的混合与重排,最终使得基底表面呈现为石墨结构。Co位于第五层时不再影响基底表面的稳定构型及膜基界面结合强度。
    Diamond coating has many excellent properties such as extreme hardness, high elastic modulus, high thermal conductivity, low friction coefficient, low thermal expansion coefficient, and good corrosion resistance that are close to natural diamond, making it an ideal new type of wear-resistant tool coating material. However, a large number of experiments have proved that during the deposition of diamond coating, the bonding phase cobalt on the surface of impregnated diamond substrate will generate a layer of graphite at the interface, seriously weakening the adhesive strength between the substrate and the coating. To thoroughly solve this problem, it is necessary to research the theory and microscopic process of graphitization caused by the Co element embedded on the substrate surface. Therefore, this article adopts the first principle theroy to simulate and analyze the interfacial adhesive strength of diamond coating when Co atom is embedded at different depths on the surface of impregnated diamond substrate, in order to explore the influence mechanism of the bonding phase Co element in the substrate on the diamond coating and the

    mechanism of Co promoting diamond graphitization. The calculation results show that the interfacial binding energy decreases first and then increases with the increase of Co embedding depth in the substrate. When Co atom is embedded in the third layer, obvious graphite structures are prone to appear at the interface, and Co promotes diamond graphitization most significantly, resulting in the minimum bonding strength between the film and substrate interface. The results of structure and charge indicate that under the influence of surface effect and Co-C bond length, the C atom in the second layer of the substrate move to the first layer and the hybridization mode changes from sp3 to sp2. Meanwhile, this movement leads to an increase in the interaction space and quantity between Co and the surrounding C atoms. In addition, there are many unpaired electrons in the Co valence layer, which can easily mix and rearrange electron orbitals with the surrounding C atoms, ultimately resulting in a graphite structure on the substrate surface. When Co is embedded in the fifth layer, it no longer affects the stable configuration of the substrate surface and the interfacial adhesive strength.

  • [1]

    Yan B, He N, Chen N, Weigold M, Chen H W, Sun S C, Wu Y, Fu S Y, Li L, Abele E 2025Int. J. Extrem. Manuf. 7 015106

    [2]

    Du Y F, Xie F M, Wang J, Xu B, Chen H Y, Yan B N, Wu Y J, Huang W F, Li H 2023Materials (Basel). 16 3640

    [3]

    Wheeler D W, Wood R J K 2024Wear. 556-557 205488

    [4]

    Jian X G, Zhang Y H 2015Acta Phys. Sin. 64 046701(in Chinese)[简小刚,张允华2015 64 046701]

    [5]

    Wang X L, Wu X, Lu K, Ye J W 2025Diam. Relat. Mater. 152 111886.

    [6]

    Liu X W, Zhang H, Lin G L, Wang Z G, Zhang J L, Shi H Y 2023Vacuum. 217 112562

    [7]

    Tian Q Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z F, Li G H, Jia X Y, Liu L S, Jiang X 2017J. Mater. Sci. Technol. 331097

    [8]

    Li X J, He L L, Li Y S, Yang Q 2019Surf. Coat. Technol. 360 20

    [9]

    Saiki Y, Bando T, Harigai T, Takikawa Hirofumi, Hattori T, Sugita H, Kawahara, N, Tanaka K 2023Diam. Relat. Mater.132 109643

    [10]

    Qiao Y, Nie S Y, Li W H, Liu E Z, Wang X C 2023Appl. Surf. Sci. 633 157589

    [11]

    Sedov V, Martyanov A, Ashkinazi E, Tiazhelov I, Savin Se, Sovyk D, Mandal S, Fedorov S, Grigoriev S, Ralchenko V 2023 Surf. Interfaces. 38102861

    [12]

    Jian X G, Chen J 2015Acta Phys. Sin. 64 216701(in Chinese)[简小刚,陈军2015 64 216701]

    [13]

    Sarangi S K, Chattopadhyay A, Chattopadhyay A K 2008Appl. Surf. Sci. 254 3721

    [14]

    Hu J B, Jian X G 2022Mod. Phys. Lett. B. 36 2250086

    [15]

    Fan S Y, Kuang T C, Lin S S, Dai J M 2023Mater. Rep. 37 28(in Chinese)[范舒瑜,匡同春,林松盛,代明江2023材料导报37 28]

    [16]

    Donnet J B, Paulmier D, Oulanti H 2004Carbon. 42 2215

    [17]

    Lloret F, Soto B, Rouzbahani R, Gutiérrez M, Haenen K, Araujo D 2023Diam. Relat. Mater. 133109746

    [18]

    Zhu P, Zhang Q, Xia Y X, Ma Y F, Gou H S, Liang X, Wu G H 2024 Mater. Today Phys. 48 101563

    [19]

    Hu J B, Jian X G, Yang T, Peng X Y 2022Diam. Relat. Mater. 123108864

    [20]

    Bi K, Liu J, Dai Q X. 2012Appl. Surf. Sci. 258 4581

    [21]

    Pang X Z,Yang X Y,Yang J B,Zhao Y J, Pang M J 2021Diam. Relat. Mater. 113 108297

    [22]

    Ernzerhof M, Scuseria G E 1999J. Chem. Phys. 110 5029

    [23]

    Perdew J P, Burke K, Ernzerhof M. 1996Phys. Rev. Lett. 77 3865

    [24]

    Chadi D J 1977Phys. Rev. B 16 1746

    [25]

    Jin S S, You Z Y, Han P D, Jiang A X, Sun C L, Wang L B, Zhang T, Liu S L 2024Comput. Mater. Sci. 244 113235

  • [1] 甄嘉鹏, 郭斯琳, 张丹萍, 巩仁峰, 向自强, 吕克洪, 邱静, 刘冠军. 金刚石烯基晶体管沟道解析模型与电流超敏特性.  , doi: 10.7498/aps.74.20250009
    [2] 朱奕衡, 朱志光, 陈成克, 蒋梅燕, 李晓, 鲁少华, 胡晓君. 基于石墨烯竖立片层常压相变制备纳米金刚石.  , doi: 10.7498/aps.73.20231064
    [3] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究.  , doi: 10.7498/aps.73.20240515
    [4] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响.  , doi: 10.7498/aps.72.20221942
    [5] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真.  , doi: 10.7498/aps.71.20211981
    [6] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度.  , doi: 10.7498/aps.68.20190350
    [7] 简小刚, 张允华. 温度对金刚石涂层膜基界面力学性能的影响.  , doi: 10.7498/aps.64.046701
    [8] 简小刚, 陈军. Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响.  , doi: 10.7498/aps.64.216701
    [9] 王静, 刘贵昌, 李红玲, 侯保荣. 铜基类金刚石膜功能梯度材料作为散热材料的研究.  , doi: 10.7498/aps.61.058102
    [10] 马天宝, 胡元中, 王 慧. 超薄类金刚石膜生长和结构特性的分子动力学模拟.  , doi: 10.7498/aps.55.2922
    [11] 欧阳晓平, 王 兰, 范如玉, 张忠兵, 王 伟, 吕反修, 唐伟忠, 陈广超. 金刚石膜探测器研制.  , doi: 10.7498/aps.55.2170
    [12] 李俊杰, 吴汉华, 龙北玉, 吕宪义, 胡超权, 金曾孙. N离子注入对金刚石膜场发射特性的影响.  , doi: 10.7498/aps.54.1447
    [13] 刘存业, 刘 畅. CVD金刚石膜的结构分析.  , doi: 10.7498/aps.52.1479
    [14] 杨仕娥, 姚宁, 王小平, 李会军, 马丙现, 秦广雍, 张兵临. Mo离子注入对金刚石涂层附着性能的影响.  , doi: 10.7498/aps.51.347
    [15] 孔春阳, 王万录, 廖克俊, 马勇, 王蜀霞, 方亮. p型半导体金刚石膜的磁阻效应.  , doi: 10.7498/aps.50.1616
    [16] 廖克俊, 王万录, 冯 斌. 负偏压热灯丝CVD金刚石膜核化和早期生长的研究.  , doi: 10.7498/aps.47.514
    [17] 廖克俊, 王万录. 直流等离子体CVD法合成的金刚石膜的断裂强度研究.  , doi: 10.7498/aps.43.1559
    [18] 高巧君, 林增栋. 在强碳化物形成元素衬底上生长金刚石薄膜的物理机制探索.  , doi: 10.7498/aps.41.798
    [19] 高巧君, 王胜强, 林汀, 胡毅飞, 林增栋. 金刚石和石墨单晶表面覆盖沉积铬的研究.  , doi: 10.7498/aps.39.121-2
    [20] 刘光照. 在熔融金属溶液中石墨在金刚石稳定区结晶的可能性.  , doi: 10.7498/aps.28.334
计量
  • 文章访问数:  63
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-21

/

返回文章
返回
Baidu
map