Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical studies on molecular conformers and infrared spectra of triethylamine

Qiu Zi-Heng Ahmed Yousif Ghazal Long Jin-You Zhang Song

Citation:

Theoretical studies on molecular conformers and infrared spectra of triethylamine

Qiu Zi-Heng, Ahmed Yousif Ghazal, Long Jin-You, Zhang Song
PDF
HTML
Get Citation
  • Based on the method of density functional theory B3LYP with a 6-311++G(d, p) basis set, the potential energy surface of conformational isomerization along the two-dimensional coordinates formed by the dihedral angles ϕ1(C9N1C2C5) and ϕ2(C16N1C9C12) in a range of –180°–180° is investigated. And 12 ground state conformers of triethylamine are identified. Furthermore,with the second-order Moller-Plesset perturbation theoryMP2 on the same basis set level, the structures of six lower-energy conformers are optimized and their energy values are estimated. The results show that G1 and G1' with C3 symmetry are the most stable conformers and G4 and G4' with new methyl orientations are identified. In addition, some vibrational modes in the infrared spectra of G1–G4 are assigned and discussed. The infrared spectra of G1–G4 show that the intensity is weak in a range of 0–1600 cm–1, while the intensity is strong in a range of 2800–3300 cm–1. The characteristic vibration modes such as umbrella vibration and CH stretching vibration are assigned. The average shift of the corresponding infrared peaks on different conformations is estimated at less than 20 cm–1.
      Corresponding author: Long Jin-You, longjy@wipm.ac.cn ; Zhang Song, zhangsong@wipm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700) and the National Natural Science Foundation of China (Grant Nos. 11974381, 21873114, 11774385, 21773299, 12074389).
    [1]

    Park S T, Kim S K, Kim M S 2002 Nature 415 306Google Scholar

    [2]

    Kim M H, Shen L, Tao H, Martinez T J, Suits A G 2007 Science 315 1561Google Scholar

    [3]

    Gosselin J L, Weber P M 2005 J. Phys. Chem. A 109 4899Google Scholar

    [4]

    Deb S, Bayes B A, Minitti M P, Weber P M 2011 J. Phys. Chem. A 115 1804Google Scholar

    [5]

    Minitti M P, Weber P M 2007 Phys. Rev. Lett. 98 253004Google Scholar

    [6]

    Kuthirummal N, Weber P M 2003 Chem. Phys. Lett. 378 647Google Scholar

    [7]

    Kuthirummal N, Weber P M 2006 J. Mol. Struct. 787 163Google Scholar

    [8]

    Dian B C, Clarkson J R, Zwier T S 2004 Science 303 1169Google Scholar

    [9]

    Kumar K 1971 Chem. Phys. Lett. 9 504Google Scholar

    [10]

    Crocker C, Goggin P L 1978 J. Chem. Soc. Dalton Trans 388

    [11]

    Bushweller C H, Fleischman S H, Grady G L, McGoff P, Rithner C D, Whalon M R, Brennan J G, Marcantonio R P, Domingue R P 1982 J. Am. Chem. Soc. 104 6224Google Scholar

    [12]

    Fleischman S H, Weltin E E, Bushweller C H 1985 J. Comput. Chem. 6 249Google Scholar

    [13]

    Takeuchi H, Kojima T, Egawa T, Konaka S 1992 J. Phys. Chem. 96 4389Google Scholar

    [14]

    Grimme S 2011 Wiley Interdiscip. Rev. -Comput. Mol. Sci. 1 211Google Scholar

    [15]

    Grimme S, Hansen A, Brandenburg J G, Bannwarth C 2016 Chem. Rev. 116 5105Google Scholar

    [16]

    Sølling T I, Kötting C, Zewail A H 2003 J. Phys. Chem. A 107 10872Google Scholar

    [17]

    Cardoza J D, Rudakov F M, Weber P M 2008 J. Phys. Chem. A 112 10736Google Scholar

    [18]

    Deb S, Cheng X, Weber P M 2013 J. Phys. Chem. Lett. 4 2780Google Scholar

    [19]

    Cheng X, Zhang Y, Deb S, Minitti M P, Gao Y, Jónsson H, Weber P M 2014 Chem. Sci. 5 4394Google Scholar

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian09 (Revision E.01)

    [21]

    Vosko S H, Wilk L, Nusair M 1980 Can. J. Phys. 58 1200Google Scholar

    [22]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650Google Scholar

    [23]

    Møller C, Plesset M S 1934 Phys. Rev. 46 618Google Scholar

  • 图 1  三乙胺分子在笛卡尔坐标系下的结构示意图.

    Figure 1.  Schematic structure of triethylamine in Cartesian coordinate system.

    图 2  沿二面角ϕ1(C9N1C2C5)与ϕ2(C16N1C9C12)构成的二维坐标扫描–180°—180°范围内三乙胺构象异构化势能面

    Figure 2.  The conformational isomerization potential energy surface in the range of –180°–180° scanning along the two-dimensional coordinates formed by the dihedral angles of ϕ1 (C9N1C2C5) and ϕ2 (C16N1C9C12).

    图 3  基于B3LYP/6-311++G(d, p)水平计算得到的三乙胺的12种稳定构象异构体的分子结构

    Figure 3.  The 12 stable conformers of triethylamine calculated on B3LYP/6-311++G(d, p) level.

    图 4  ϕ1 (–100°—180°)与ϕ2 (40°—180°)范围内的6种构象异构体的势能面

    Figure 4.  The conformational isomerization potential energy surface of the six conformers in ϕ1(–100°–180°) and ϕ2 (40°–180°).

    图 5  在B3LYP/6-311++G(d, p)水平上计算得到的G1—G4构象异构体的红外光谱

    Figure 5.  The infrared spectra of the G1–G4 conformers calculated at B3LYP/6-311++G(d, p) level.

    图 6  基于B3LYP/6-311++G(d, p)水平计算得到的G1—G4构象异构体的伞形振动(上排图)和C—H对称伸缩振动(下排图)及其频率

    Figure 6.  The umbrella vibration mode (upper panel) and C—H symmetric stretch mode (lower panel) and their frequencies of the G1—G4 conformers calculated on B3LYP/6-311++G(d, p) level.

    表 1  基于B3LYP/6-311++G(d, p)水平计算得到的三乙胺的12种稳定构象异构体的二面角与能量

    Table 1.  The energies and dihedral angles of the 12 conformers of triethylamine calculated on B3LYP/6-311++G(d, p) level

    Conformersϕ1/(°)ϕ2/(°)ϕ3/(°)Energy/HartreeRelative E/meV
    G1 (GGG)155.42155.60155.64–292.5016690
    G1' (G'G'G')77.6777.6377.63–292.5016201.33
    G2 (TG'G')–66.6276.0263.21–292.50006143.76
    G3 (TGG)–64.76165.17151.59–292.50006143.76
    G4 (GG'G'')162.8567.24115.28–292.49982450.21
    G4' (G'G''G)67.24115.26162.86–292.49982450.21
    G5 (G'GT)–167.71–60.2865.25–292.49982650.15
    G6 (GGT)–75.99–63.2166.63–292.50006143.76
    G7 (G'G'T)–165.17–151.5964.75–292.50006143.76
    G8 (G'TG)60.28–65.24167.73–292.49982650.15
    G9 (GTG)151.58–64.74165.19–292.50006143.76
    G10 (TG'T)56.64–156.4876.67–292.497311118.59
    DownLoad: CSV

    表 2  三乙胺的6种稳定构象异构体在MP2/6-311++G(d, p)计算下的二面角与能量

    Table 2.  The energies and dihedral angles of the six stable conformers of triethylamine on the level of MP2/6-311++G(d, p)

    Conformersϕ1/(°)ϕ2/(°)ϕ3/(°)Energy/HartreeRelative E/meV
    G1 (GGG)157.62157.63157.63–291.5597370
    G1' (G'G'G')79.5379.5379.53–291.5597370
    G2 (TG'G')–66.9175.2757.80–291.55855932.06
    G3 (TGG)–59.62175.87158.42–291.55856331.95
    G4 (GG'G'')166.1167.66117.32–291.55851633.23
    G4' (G'G''G)67.74117.11166.19–291.55851733.20
    DownLoad: CSV

    表 3  基于B3LYP/6-311++G(d, p)水平计算得到的G1—G4构象异构体的振动模式与频率

    Table 3.  The vibrational modes and their frequencies of the G1-G4 conformers calculated on B3LYP/6-311++G(d, p) level

    ModesFrequency /cm–1Infrared /(arb. units)
    G1G2G3G4G1G2G3G4
    ν187.2255.0255.1050.350.15320.06390.06390.0004
    ν290.9887.4387.4196.490.19780.18570.18570.0238
    ν395.03109.27109.28140.350.10840.29320.29330.7795
    ν4188.06178.51178.54178.161.10112.08292.08301.1365
    ν5208.61203.62203.58205.940.07930.07170.07240.0393
    ν6214.02224.68224.73223.870.04680.06900.06870.1212
    ν7294.38268.43268.36256.331.09860.37580.37570.1000
    ν8304.06290.93290.98328.650.33301.02271.02251.6826
    ν9305.06331.61331.61332.280.33010.68970.69080.3791
    ν10427.73407.68407.74390.843.01841.92951.92861.8981
    ν11465.12465.26465.28449.381.92452.39562.39481.6278
    ν12466.51519.32519.35495.271.92726.04746.04640.2229
    ν13732.52721.09721.08734.0712.94029.48139.479710.9942
    ν14786.67769.53769.53763.173.83074.33714.34126.1536
    ν15787.30788.70788.71790.733.89212.63642.63461.2979
    ν16797.88799.48799.50799.560.06021.63821.63741.5619
    ν17907.63886.81886.80911.001.25131.67921.68061.3188
    ν18907.82906.38906.37911.591.24501.30851.31020.5529
    ν191002.59983.42983.411003.176.767711.073811.07395.7366
    ν201059.241035.021035.001056.0229.64668.27278.269718.7155
    ν211059.731059.501059.461058.6330.028830.839631.103416.0090
    ν221065.721062.071062.061069.233.21008.45808.216630.8172
    ν231078.101078.781078.771076.498.53843.61513.60281.3100
    ν241078.681090.021090.041102.408.319028.791128.78318.1051
    ν251145.201130.091130.091132.9712.068210.181910.182419.8481
    ν261208.091204.991204.961210.2123.088318.455318.441217.6571
    ν271208.581213.111213.111213.2623.173525.107925.119635.4460
    ν281295.981286.871286.861275.966.15435.50695.53464.4355
    ν291299.901291.741291.731307.0519.887019.047819.008520.9498
    ν301301.081338.301338.291319.2719.594913.327813.31061.2005
    ν311368.211352.091352.091354.631.991711.369011.392437.8361
    ν321369.161366.651366.641357.261.27723.08363.08215.3537
    ν331377.641375.361375.351377.690.31913.94513.94590.5963
    ν341388.041377.001377.001381.0617.850914.417914.426919.6423
    ν351388.151386.561386.551382.6418.374020.658020.628212.8529
    ν361388.871390.271390.261404.9819.794415.699815.69745.4524
    ν371457.171452.041452.051453.702.74734.84884.85655.2712
    ν381457.421458.811458.811455.341.69354.55494.53010.3420
    ν391457.691461.081461.081458.892.25722.77072.78673.6730
    ν401462.711465.681465.671462.411.85272.05382.05844.0415
    ν411470.311469.261469.251465.411.20483.41223.40140.0857
    ν421470.921470.191470.181473.121.53361.35961.37833.1465
    ν431480.411477.891477.881478.477.15902.92332.92491.5156
    ν441481.401480.621480.601484.667.015214.891614.885110.1121
    ν451485.831490.871490.861487.6812.43061.44781.447814.3785
    ν462840.182846.522846.552823.8723.244736.533136.750030.6694
    ν472840.742855.552855.622833.6723.3082133.4917133.2390190.3336
    ν482852.732964.142964.102931.98238.226828.925028.942052.7107
    ν492966.712965.862965.832961.4329.743322.593522.584224.4676
    ν502967.272967.802967.772962.1529.730326.933226.949532.0017
    ν512967.732969.712969.692966.6920.427726.668026.649955.0959
    ν523005.552985.782985.822967.5112.918819.017418.96079.9999
    ν533006.002999.962999.912982.6312.085816.248416.28801.3433
    ν543009.333003.923003.902993.290.06697.09677.122329.3355
    ν553025.883022.393022.353025.089.033139.484939.487951.7362
    ν563028.873026.723026.713026.9248.693215.024915.095024.4990
    ν573029.123029.643029.643028.6044.494961.755261.892954.1919
    ν583037.743031.733031.723036.4553.689942.246342.02513.3194
    ν593039.703037.263037.243037.3745.272952.335152.298769.7071
    ν603040.263040.203040.203041.4046.031644.498744.509331.7214
    DownLoad: CSV
    Baidu
  • [1]

    Park S T, Kim S K, Kim M S 2002 Nature 415 306Google Scholar

    [2]

    Kim M H, Shen L, Tao H, Martinez T J, Suits A G 2007 Science 315 1561Google Scholar

    [3]

    Gosselin J L, Weber P M 2005 J. Phys. Chem. A 109 4899Google Scholar

    [4]

    Deb S, Bayes B A, Minitti M P, Weber P M 2011 J. Phys. Chem. A 115 1804Google Scholar

    [5]

    Minitti M P, Weber P M 2007 Phys. Rev. Lett. 98 253004Google Scholar

    [6]

    Kuthirummal N, Weber P M 2003 Chem. Phys. Lett. 378 647Google Scholar

    [7]

    Kuthirummal N, Weber P M 2006 J. Mol. Struct. 787 163Google Scholar

    [8]

    Dian B C, Clarkson J R, Zwier T S 2004 Science 303 1169Google Scholar

    [9]

    Kumar K 1971 Chem. Phys. Lett. 9 504Google Scholar

    [10]

    Crocker C, Goggin P L 1978 J. Chem. Soc. Dalton Trans 388

    [11]

    Bushweller C H, Fleischman S H, Grady G L, McGoff P, Rithner C D, Whalon M R, Brennan J G, Marcantonio R P, Domingue R P 1982 J. Am. Chem. Soc. 104 6224Google Scholar

    [12]

    Fleischman S H, Weltin E E, Bushweller C H 1985 J. Comput. Chem. 6 249Google Scholar

    [13]

    Takeuchi H, Kojima T, Egawa T, Konaka S 1992 J. Phys. Chem. 96 4389Google Scholar

    [14]

    Grimme S 2011 Wiley Interdiscip. Rev. -Comput. Mol. Sci. 1 211Google Scholar

    [15]

    Grimme S, Hansen A, Brandenburg J G, Bannwarth C 2016 Chem. Rev. 116 5105Google Scholar

    [16]

    Sølling T I, Kötting C, Zewail A H 2003 J. Phys. Chem. A 107 10872Google Scholar

    [17]

    Cardoza J D, Rudakov F M, Weber P M 2008 J. Phys. Chem. A 112 10736Google Scholar

    [18]

    Deb S, Cheng X, Weber P M 2013 J. Phys. Chem. Lett. 4 2780Google Scholar

    [19]

    Cheng X, Zhang Y, Deb S, Minitti M P, Gao Y, Jónsson H, Weber P M 2014 Chem. Sci. 5 4394Google Scholar

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian09 (Revision E.01)

    [21]

    Vosko S H, Wilk L, Nusair M 1980 Can. J. Phys. 58 1200Google Scholar

    [22]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650Google Scholar

    [23]

    Møller C, Plesset M S 1934 Phys. Rev. 46 618Google Scholar

  • [1] Tong Zan, Yang Yin-Li, Xu Jing, Liu Wei, Chen Liang. Theoretical study of helium separation performance of crown ether-graphane membranes. Acta Physica Sinica, 2023, 72(6): 068201. doi: 10.7498/aps.72.20222183
    [2] Cui Zi-Chun, Yang Mo-Han, Ruan Xiao-Peng, Fan Xiao-Li, Zhou Feng, Liu Wei-Min. High-throughput calculation of interfacial friction of two-dimensional material. Acta Physica Sinica, 2023, 72(2): 026801. doi: 10.7498/aps.72.20221676
    [3] Qiu Zi-Yang, Chen Yan, Qiu Xiang-Gang. Infrared spectroscopic study of topological material BaMnSb2. Acta Physica Sinica, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [4] Li Wen-Tao, Yuan Mei-Ling, Wang Jie-Min. Dynamics of C+ + H2 reaction based on a new potential energy surface. Acta Physica Sinica, 2022, 71(9): 093402. doi: 10.7498/aps.71.20212241
    [5] Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin. Spectral analysis and density functional theory study of tert-butylhydroquinone. Acta Physica Sinica, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [6] Zhao Wen-Li, Wang Yong-Gang, Zhang Lu-Lu, Yue Da-Guang, Meng Qing-Tian. Wave packet quantum dynamics of ${\bf{C}}{(^3}{\bf{P}}) + {{\bf{H}}_2}({{\bf{X}}^1} \Sigma _{\bf{g}}^ + ) $ $ \to {\bf{H}}{(^2}{\bf{S}}) + {\bf{CH}}{(^2} \Pi ) $ reaction based on new CH2(${\tilde {\bf X}{}^3}\bf A''$) surface. Acta Physica Sinica, 2020, 69(8): 083401. doi: 10.7498/aps.69.20200132
    [7] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [8] Xu Bing, Qiu Zi-Yang, Yang Run, Dai Yao-Min, Qiu Xiang-Gang. Optical properties of topological semimetals. Acta Physica Sinica, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [9] Wang An-Jing, Fang Yong-Hua, Li Da-Cheng, Cui Fang-Xiao, Wu Jun, Liu Jia-Xiang, Li Yang-Yu, Zhao Yan-Dong. Simulation of pollutant-gas-cloud infrared spectra under plane-array detecting. Acta Physica Sinica, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [10] Chi Bao-Qian, Liu Yi, Xu Jing-Cheng, Qin Xu-Ming, Sun Chen, Bai Cheng-Hao, Liu Yi-Fan, Zhao Xin-Luo, Li Xiao-Wu. Density functional theory study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, 2016, 65(13): 133101. doi: 10.7498/aps.65.133101
    [11] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [12] Han Yu-Long, Li Zhen, Wang Jiang-Hong, Feng Er-Yin, Huang Wu-Ying. Potential energy surface and spectra prediction for the Mg-CO complex. Acta Physica Sinica, 2013, 62(9): 093101. doi: 10.7498/aps.62.093101
    [13] Li Xin, Yang Meng-Shi, Ye Zhi-Peng, Chen Liang, Xu Can, Chu Xiu-Xiang. DFT research on the IR spectrum of glycine tryptophan oligopeptides chain. Acta Physica Sinica, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [14] Liu Xiao-Dong, Tao Wan-Jun, Hagihala Masato, Guo Qi-Xin, Meng Dong-Dong, Zhang Sen-Lin, Zheng Xu-Guang. Mid-infrared spectroscopic properties of geometrically frustrated basic cobalt chlorides. Acta Physica Sinica, 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [15] Lu Zhen-Ping, Han Kui, Li Hai-Peng, Zhang Wen-Tao, Huang Zhi-Min, Shen Xiao-Peng, Zhang Zhao-Hui, Bai Lei. Theoretical study of molecular vibrational hyperpolarizability of 4-N-methylstilbazonium salt derivatives. Acta Physica Sinica, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [16] Yu Chun-Ri, Feng Er-Yin, Cheng Xin-Lu, Yang Xiang-Dong. Theoretical study of the potential energy surface and differential scattering cross sections of He-HI complex. Acta Physica Sinica, 2007, 56(8): 4441-4447. doi: 10.7498/aps.56.4441
    [17] Jiang Zhen-Yi, Li Sheng-Tao. First principles study of potential energy curves of NiTi alloy. Acta Physica Sinica, 2006, 55(11): 6032-6035. doi: 10.7498/aps.55.6032
    [18] Han Hui-Xian, Peng Qian, Wen Zhen-Yi, Wang Yu-Bin. Local potential energy surface and vibration analysis for the S2O molecule. Acta Physica Sinica, 2005, 54(1): 78-84. doi: 10.7498/aps.54.78
    [19] Yang Wu-Bao, Wang Jiu-Li, Zhang Gu-Ling, Fan Song-Hua, Liu Chi-Zi, Yang Si-Ze. Diamond-like carbon films deposited on optical glass substrate by using ECR microwave acetone plasma CVD method. Acta Physica Sinica, 2004, 53(9): 3099-3103. doi: 10.7498/aps.53.3099
    [20] Wang Xiao-Yan, Ding Shi-Liang. Constructing potential energy surface of tetratomic molecules using Lie algebra. Acta Physica Sinica, 2004, 53(2): 423-426. doi: 10.7498/aps.53.423
Metrics
  • Abstract views:  6525
  • PDF Downloads:  163
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2022
  • Accepted Date:  29 January 2022
  • Available Online:  10 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回
Baidu
map