搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冠醚石墨烷对氦气分离性能的理论研究

佟赞 杨银利 徐晶 刘伟 陈亮

引用本文:
Citation:

冠醚石墨烷对氦气分离性能的理论研究

佟赞, 杨银利, 徐晶, 刘伟, 陈亮

Theoretical study of helium separation performance of crown ether-graphane membranes

Tong Zan, Yang Yin-Li, Xu Jing, Liu Wei, Chen Liang
PDF
HTML
导出引用
  • 氦气(He)在众多科学和工业领域中都具有非常广泛的应用, He资源的短缺和需求的不断增长使得He分离具有极其重要的意义. 石墨烷合成简单、晶体结构稳定, 是一种用于构建气体分离膜的潜在理想二维材料. 本文通过第一性原理计算, 对四种具有不同尺寸冠醚孔的石墨烷膜(crown ether graphane-n, CG-n, n = 3, 4, 5, 6)的He分离性能进行了研究. 计算结果表明, 四种冠醚石墨烷结构都具有较高的热力学、化学稳定性, 并且CG-5和CG-6具有合适的孔径, 可用于He的有效筛分. 在11种气体分子(He, Ne, Ar, H2, CO, NO, NO2, N2, CO2, SO2和CH4)中, He最容易通过CG-n膜, 其能垒分别为4.55, 1.05, 0.53和0.01 eV. 据我们所知, He通过CG-6的能垒是迄今为止报道的最低值, 将可显著地提升He的分离效率. 基于阿伦尼乌斯方程的选择性计算结果表明, CG-5在较宽的温度范围内(0—600 K)都表现出优异的He选择性(相对于其他10种气体), 而CG-6由于冠醚环孔径较大, 仅相对于部分气体分子具有较好的He选择性. 本研究同时分析了膜孔径大小、气体分子动力学直径和气体分子类型对冠醚石墨烷膜的He分离性能影响的协同机制. 因此, 孔径合适的冠醚石墨烷膜(CG-5和CG-6)是一类潜在的选择性高、性能优异的 He分离膜.
    Helium (He) is widely used in many scientific and industrial fields, and the shortage of He resources and the growing demand make He separation extremely important. In this work, the He separation performances of a series of graphanes containing crown ether nanopores (crown ether graphane, CG-n, n = 3, 4, 5, 6) are studied by first-principles calculations. At first, the minimum energy paths of He and other 10 gas molecules (Ne, Ar, H2, CO, NO, NO2, N2, CO2, SO2 and CH4) passing through CG-n membranes are calculated, and the factors affecting the energy barriers are also investigated. The calculated results show that He is the easiest to pass through all the four CG-n membranes with energy barriers of 4.55, 1.05, 0.53 and 0.01 eV, respectively. He can be separated by CG-5 and CG-6 with very low energy barriers, and the energy barrier of He passing through CG-6 is the lowest, so far as we know. Moreover, all gas molecules can pass through CG-6 with low energy barriers, including many molecules with large kinetic diameters, such as CO (0.13 eV) and N2 (0.16 eV). Therefore, CG-6 is also expected to be used in the screening field of other gas molecules. In addition, it is found that the energy barriers of gas molecules passing through CG-n are synergistically affected by the size of the crown ether nanopore, the kinetic diameter and the type of the gas molecules. Secondly, the diffusion rates of gas molecules passing through CG-5 and CG-6 and the He selectivity towards other 10 gases of CG-5 and CG-6 at different temperatures are calculated. It is found that CG-5 exhibits extremely high He selectivity in a wide temperature range (0–600 K). In summary, the crown ether graphanes CG-5 and CG-6 can serve as excellent He separation membranes with high He selectivity. This work is expected to inspire one to develop other graphene-based two-dimensional separation membranes for separating He and other gas molecules.
      通信作者: 徐晶, jingxu@zafu.edu.cn ; 刘伟, weiliu@zafu.edu.cn
    • 基金项目: 浙江省自然科学基金(批准号: LQ20B030002)、国家自然科学基金(批准号: 12075211, 11975206, 11875236, 12074341)和浙江农林大学科研基金(批准号: 2019FR005, 2019FR006)资助的课题.
      Corresponding author: Xu Jing, jingxu@zafu.edu.cn ; Liu Wei, weiliu@zafu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ20B030002), the National Natural Science Foundation of China (Grant Nos. 12075211, 11975206, 11875236, 12074341), and the Scientific Research Foundation of Zhejiang A&F University, China (Gant Nos. 2019FR005, 2019FR006).
    [1]

    Cho A 2009 Science 326 778Google Scholar

    [2]

    杨初平, 耿屹南, 王捷, 刘兴南, 时振刚 2021 70 135102Google Scholar

    Yang C P, Geng Y N, Wang J, Liu X N, Shi Z G 2021 Acta Phys. Sin. 70 135102Google Scholar

    [3]

    Fatemi S M, Abbasi Z, Rajabzadeh H, Hashemizadeh S A, Deldar A N 2017 Eur. Phys. J. D 71 194Google Scholar

    [4]

    Dai Z, Deng J, He X, Scholes C A, Jiang X, Wang B, Guo H, Ma Y, Deng L 2021 Sep. Purif. Technol. 274 119044Google Scholar

    [5]

    王倩, 赵江山, 范元媛, 郭馨, 周翊 2020 69 174207Google Scholar

    Wang Q, Zhao J S, Fan Y Y, Guo X, Zhou Y 2020 Acta Phys. Sin. 69 174207Google Scholar

    [6]

    Wei S, Zhou S, Wu Z, Wang M, Wang Z, Guo W, Lu X 2018 Appl. Surf. Sci. 441 631Google Scholar

    [7]

    Rufford T E, Chan K I, Huang S H, May E F 2014 Adsorpt. Sci. Technol. 32 49Google Scholar

    [8]

    Stern S A, Sinclair T F, Gareis P J, Vahldieck N P, Mohr P H 1965 Ind. Eng. Chem. 57 49

    [9]

    Yao B, Mandrà S, Curry J O, Shaikhutdinov S, Freund H J, Schrier J 2017 ACS Appl. Mater. Interfaces 9 43061Google Scholar

    [10]

    Pakdel S, Erfan-Niya H, Azamat J 2022 J. Mol. Graphics Modell. 115 108211Google Scholar

    [11]

    Mirzaei M, Karimi-Sabet J, Nikkho S, Towfighi-Darian J 2022 ACS Appl. Nano Mater. 5 1745Google Scholar

    [12]

    Schrier J 2010 J. Phys. Chem. Lett. 1 2284Google Scholar

    [13]

    Andrews N L P, Fan J Z, Forward R L, Chen M C, Loock H P 2017 Phys. Chem. Chem. Phys. 19 73Google Scholar

    [14]

    Malekian F, Ghafourian H, Zare K, Sharif A A, Zamani Y 2019 Eur. Phys. J. Plus 134 212Google Scholar

    [15]

    Liu M, Gurr P A, Fu Q, Webley P A, Qiao G G 2018 J. Mater. Chem. A 6 23169Google Scholar

    [16]

    Koenig S P, Wang L, Pellegrino J, Bunch J S 2012 Nat. Nanotechnol. 7 728Google Scholar

    [17]

    Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W 2014 Science 346 1356Google Scholar

    [18]

    Oyama S, Lee D, Hacarlioglu P, Saraf R 2004 J. Membr. Sci. 244 45Google Scholar

    [19]

    Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, Choi J Y, Park H B 2013 Science 342 91Google Scholar

    [20]

    Sun W 2021 Nat. Nanotechnol. 16 1054Google Scholar

    [21]

    Liu X, Chang X, Zhu L, Li X 2019 Comput. Mater. Sci. 157 1Google Scholar

    [22]

    Chen X, Zhang S, Hou D, Duan H, Deng B, Zeng Z, Liu B, Sun L, Song R, Du J, Gao P, Peng H, Liu Z, Wang L 2021 ACS Appl. Mater. Interfaces 13 29926Google Scholar

    [23]

    Wang Y, Li J, Yang Q, Zhong C 2016 ACS Appl. Mater. Interfaces 8 8694Google Scholar

    [24]

    Boutilier M S H, Sun C, O’Hern S C, Au H, Hadjiconstantinou N G, Karnik R 2014 ACS Nano 8 841Google Scholar

    [25]

    Hu W, Wu X, Li Z, Yang J 2013 Nanoscale 5 9062Google Scholar

    [26]

    Sluiter M H F, Kawazoe Y 2003 Phys. Rev. B 68 085410Google Scholar

    [27]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar

    [28]

    Pumera M, Wong C H A 2013 Chem. Soc. Rev. 42 5987Google Scholar

    [29]

    Guo K, Liu S, Tu H, Wang Z, Chen L, Lin H, Miao M, Xu J, Liu W 2021 Phys. Chem. Chem. Phys. 23 18983Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [34]

    Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar

    [35]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [36]

    Li X, Guo T, Zhu L, Ling C, Xue Q, Xing W 2018 Chem. Eng. J. 338 92Google Scholar

    [37]

    Li J R, Kuppler R J, Zhou H C 2009 Chem. Soc. Rev. 38 1477Google Scholar

    [38]

    Li F, Qu Y, Zhao M 2015 Carbon 95 51Google Scholar

    [39]

    Zhu L, Jin Y, Xue Q, Li X, Zheng H, Wu T, Ling C 2016 J. Mater. Chem. A 4 15015Google Scholar

    [40]

    Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli C A, Passerone D 2010 Small 6 2266Google Scholar

    [41]

    Zhu L, Xue Q, Li X, Wu T, Jin Y, Xing W 2015 J. Mater. Chem. A 3 21351Google Scholar

    [42]

    Zhu Z 2006 J. Membr. Sci. 281 754Google Scholar

  • 图 1  CG-n的优化结构和孔径值(单位: Å) (a) CG-3; (b) CG-4; (c) CG-5; (d) CG-6. 黑色、红色和橙色的球分别代表碳原子、氧原子和氢原子

    Fig. 1.  Optimized structures and pore size (unit: Å) of CG-n: (a) CG-3; (b) CG-4; (c) CG-5; (d) CG-6. The black, red, and orange balls represent carbon, oxygen, and hydrogen atoms, respectively.

    图 2  气体分子通过CG-n膜的最低能量路径 (a) CG-3; (b) CG-4; (c) CG-5; (d) CG-6

    Fig. 2.  The minimum energy paths of gas molecules passing through CG-n membranes: (a) CG-3; (b) CG-4; (c) CG-5; (d) CG-6.

    图 3  气体分子通过CG-5膜时的静电势等值面图 (a) He; (b) H2; (c) Ne; (d) CO2; (e) NO2; (f) NO; (g) CO; (h) N2; (i) SO2; (j) Ar; (k) CH4

    Fig. 3.  Electrostatic potential isosurfaces of (a) He, (b) H2, (c) Ne, (d) CO2, (e) NO2, (f) NO, (g) CO, (h) N2, (i) SO2, (j) Ar and (k) CH4 molecules passing through CG-5 membrane.

    图 4  气体分子通过(a) CG-5膜和(c) CG-6膜的扩散速率-温度曲线; (b) CG-5膜和(d) CG-6膜的He选择性-温度曲线

    Fig. 4.  Diffusion rate-temperature curves of gas molecules through (a) CG-5 and (c) CG-6; He selectivity-temperature curves of (b) CG-5 and (d) CG-6.

    表 1  气体分子在CG-n上稳定吸附时的吸附能Ead 和吸附高度H

    Table 1.  Adsorption energies Ead and the adsorption heights H of gas molecules adsorbed stably on CG-n.

    CG-3CG-4CG-5CG-6
    Ead/eVHEad/eVHEad/eVHEad/eVH
    He–0.152.89–0.102.00–0.122.40–0.112.00
    Ne–0.223.11–0.172.82–0.112.00–0.142.00
    Ar–0.184.00–0.164.00–0.154.00–0.222.00
    CH4–0.372.40–0.362.30–0.291.79
    H2–0.242.70–0.232.50–0.142.00–0.182.00
    CO2–0.153.70–0.153.70–0.530.00
    NO–0.492.90–0.223.10–0.271.80
    CO–0.253.00–0.232.90–0.222.00
    N2–0.333.10–0.243.20–0.223.10–0.241.90
    NO2–0.403.10–0.113.60–0.290.00
    SO2–0.203.60–0.270.00
    下载: 导出CSV

    表 2  气体分子的动力学直径 (D) 和通过CG-n膜时的能垒 Ebarrier. D值来自文献[37]

    Table 2.  Kinetic diameters (D) of the gas molecules, and energy barriers Ebarrier for gas molecules passing through each CG-n membrane. D values from literature [37].

    DEbarrier/eV
    CG-3CG-4CG-5CG-6
    He2.604.551.050.530.01
    Ne2.8212.072.801.440.05
    Ar3.5422.808.904.860.42
    CH43.8010.816.070.80
    H22.896.231.911.000.12
    CO23.303.451.760.53
    NO3.175.122.500.10
    CO3.695.482.830.13
    N23.6415.565.953.150.16
    NO25.422.150.29
    SO24.123.400.27
    下载: 导出CSV

    表 3  室温(300 K) 下, 多孔膜材料对He (相对于其他气体)的选择性 (S)

    Table 3.  Selectivity (S) of porous membrane materials for He (over other gases) at room temperature (300 K).

    TypeCG-5aCG-6aIGPbCTF-0cC2Ndg-C3N4eg-C2OfPGg
    S(He/Ne)1.63×10154.661×1064×1063×1031×1010302×107
    S(He/CH4)4.03×10921.32×10137×10316×10387×10311×10651.15×10288×1037
    S(He/Ar)2.39×10725.24×1066×10215×10354×10181×10511.68×10146×1036
    S(He/N2)6.24×10433.09×1021×10122×10273×10121×10341.54×1066×1027
    S(He/CO)2.79×103880.51×10115×10241×10306.72×1046×1024
    S(He/CO2)3.63×10204.22×1083×1084×10168×10185.82×102
    S(He/H2)7.18×10752.7
    S(He/NO)8.51×103229.6
    S(He/NO2)1.20×10274.11×104
    S(He/SO2)9.42×10471.90×104
    注: a本工作, b文献[13], c文献[23], d文献[41], e文献[38], f文献[21], g文献[6].
    下载: 导出CSV
    Baidu
  • [1]

    Cho A 2009 Science 326 778Google Scholar

    [2]

    杨初平, 耿屹南, 王捷, 刘兴南, 时振刚 2021 70 135102Google Scholar

    Yang C P, Geng Y N, Wang J, Liu X N, Shi Z G 2021 Acta Phys. Sin. 70 135102Google Scholar

    [3]

    Fatemi S M, Abbasi Z, Rajabzadeh H, Hashemizadeh S A, Deldar A N 2017 Eur. Phys. J. D 71 194Google Scholar

    [4]

    Dai Z, Deng J, He X, Scholes C A, Jiang X, Wang B, Guo H, Ma Y, Deng L 2021 Sep. Purif. Technol. 274 119044Google Scholar

    [5]

    王倩, 赵江山, 范元媛, 郭馨, 周翊 2020 69 174207Google Scholar

    Wang Q, Zhao J S, Fan Y Y, Guo X, Zhou Y 2020 Acta Phys. Sin. 69 174207Google Scholar

    [6]

    Wei S, Zhou S, Wu Z, Wang M, Wang Z, Guo W, Lu X 2018 Appl. Surf. Sci. 441 631Google Scholar

    [7]

    Rufford T E, Chan K I, Huang S H, May E F 2014 Adsorpt. Sci. Technol. 32 49Google Scholar

    [8]

    Stern S A, Sinclair T F, Gareis P J, Vahldieck N P, Mohr P H 1965 Ind. Eng. Chem. 57 49

    [9]

    Yao B, Mandrà S, Curry J O, Shaikhutdinov S, Freund H J, Schrier J 2017 ACS Appl. Mater. Interfaces 9 43061Google Scholar

    [10]

    Pakdel S, Erfan-Niya H, Azamat J 2022 J. Mol. Graphics Modell. 115 108211Google Scholar

    [11]

    Mirzaei M, Karimi-Sabet J, Nikkho S, Towfighi-Darian J 2022 ACS Appl. Nano Mater. 5 1745Google Scholar

    [12]

    Schrier J 2010 J. Phys. Chem. Lett. 1 2284Google Scholar

    [13]

    Andrews N L P, Fan J Z, Forward R L, Chen M C, Loock H P 2017 Phys. Chem. Chem. Phys. 19 73Google Scholar

    [14]

    Malekian F, Ghafourian H, Zare K, Sharif A A, Zamani Y 2019 Eur. Phys. J. Plus 134 212Google Scholar

    [15]

    Liu M, Gurr P A, Fu Q, Webley P A, Qiao G G 2018 J. Mater. Chem. A 6 23169Google Scholar

    [16]

    Koenig S P, Wang L, Pellegrino J, Bunch J S 2012 Nat. Nanotechnol. 7 728Google Scholar

    [17]

    Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W 2014 Science 346 1356Google Scholar

    [18]

    Oyama S, Lee D, Hacarlioglu P, Saraf R 2004 J. Membr. Sci. 244 45Google Scholar

    [19]

    Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, Choi J Y, Park H B 2013 Science 342 91Google Scholar

    [20]

    Sun W 2021 Nat. Nanotechnol. 16 1054Google Scholar

    [21]

    Liu X, Chang X, Zhu L, Li X 2019 Comput. Mater. Sci. 157 1Google Scholar

    [22]

    Chen X, Zhang S, Hou D, Duan H, Deng B, Zeng Z, Liu B, Sun L, Song R, Du J, Gao P, Peng H, Liu Z, Wang L 2021 ACS Appl. Mater. Interfaces 13 29926Google Scholar

    [23]

    Wang Y, Li J, Yang Q, Zhong C 2016 ACS Appl. Mater. Interfaces 8 8694Google Scholar

    [24]

    Boutilier M S H, Sun C, O’Hern S C, Au H, Hadjiconstantinou N G, Karnik R 2014 ACS Nano 8 841Google Scholar

    [25]

    Hu W, Wu X, Li Z, Yang J 2013 Nanoscale 5 9062Google Scholar

    [26]

    Sluiter M H F, Kawazoe Y 2003 Phys. Rev. B 68 085410Google Scholar

    [27]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar

    [28]

    Pumera M, Wong C H A 2013 Chem. Soc. Rev. 42 5987Google Scholar

    [29]

    Guo K, Liu S, Tu H, Wang Z, Chen L, Lin H, Miao M, Xu J, Liu W 2021 Phys. Chem. Chem. Phys. 23 18983Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [34]

    Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar

    [35]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [36]

    Li X, Guo T, Zhu L, Ling C, Xue Q, Xing W 2018 Chem. Eng. J. 338 92Google Scholar

    [37]

    Li J R, Kuppler R J, Zhou H C 2009 Chem. Soc. Rev. 38 1477Google Scholar

    [38]

    Li F, Qu Y, Zhao M 2015 Carbon 95 51Google Scholar

    [39]

    Zhu L, Jin Y, Xue Q, Li X, Zheng H, Wu T, Ling C 2016 J. Mater. Chem. A 4 15015Google Scholar

    [40]

    Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli C A, Passerone D 2010 Small 6 2266Google Scholar

    [41]

    Zhu L, Xue Q, Li X, Wu T, Jin Y, Xing W 2015 J. Mater. Chem. A 3 21351Google Scholar

    [42]

    Zhu Z 2006 J. Membr. Sci. 281 754Google Scholar

  • [1] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 王路忠, 王秋良. 旋转超导转子的氦气阻尼特性.  , 2024, 73(8): 088401. doi: 10.7498/aps.73.20232011
    [2] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究.  , 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [3] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究.  , 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [4] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [5] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响.  , 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [6] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [7] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究.  , 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [8] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算.  , 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [9] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究.  , 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [11] 迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武. 石墨炔衍生物结构稳定性及电子结构的密度泛函理论研究.  , 2016, 65(13): 133101. doi: 10.7498/aps.65.133101
    [12] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究.  , 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [13] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [14] 吉飞宇, 张顺利. 带有扰动非线性源的多孔介质方程的近似泛函分离变量.  , 2012, 61(8): 080202. doi: 10.7498/aps.61.080202
    [15] 袁健美, 毛宇亮. 氢化与非氢化石墨烯纳米条带的密度泛函研究.  , 2011, 60(10): 103103. doi: 10.7498/aps.60.103103
    [16] 刘福, 周继承, 谭晓超. 3C-SiC(001)-(2×1)表面原子与电子结构研究.  , 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [17] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构.  , 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [18] 赵文杰, 杨 致, 闫玉丽, 雷雪玲, 葛桂贤, 王清林, 罗有华. 密度泛函理论计算GenFe(n=1—8)团簇的基态结构及其磁性.  , 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [19] 顾 斌, 金年庆, 王志萍, 曾祥华. 用含时密度泛函理论计算钠原子跃迁光谱.  , 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算.  , 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  3961
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2022-12-02
  • 上网日期:  2023-01-05
  • 刊出日期:  2023-03-20

/

返回文章
返回
Baidu
map