Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mid-infrared spectroscopic properties of geometrically frustrated basic cobalt chlorides

Liu Xiao-Dong Tao Wan-Jun Hagihala Masato Guo Qi-Xin Meng Dong-Dong Zhang Sen-Lin Zheng Xu-Guang

Citation:

Mid-infrared spectroscopic properties of geometrically frustrated basic cobalt chlorides

Liu Xiao-Dong, Tao Wan-Jun, Hagihala Masato, Guo Qi-Xin, Meng Dong-Dong, Zhang Sen-Lin, Zheng Xu-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Three types of FTIR spectrometers were employed to measure the mid-infrared (4000—400 cm-1) absorption spectra of geometrically frustrated hydroxyl cobalt chloride Co2(OH)3Cl, and the intrinsic absorption peaks in the functional group region and fingerprint region were selected and assigned to corresponding vibrational modes according to its known crystal structure. In the assigning process, great emphasis was laid on analyzing the exact experimental data of hydroxyl stretching vibration mode vOH, that is, estimating the free vOH of the Co3—OH group without any hydrogen bond (H-bond), to obtain the red-shift which reflects the formation of an H-band in Co2(OH)3Cl. A 156 cm-1 red-shift is obtained theoretically which demonstrates the presence of non-negligible weak H-bonds, and eventually result in the discovery of the rarely reported trimeric H-bond in the field of crystalline materials, which consists of three independent hydroxyl donors and only one Cl- acceptor. We explained the relative weakness of this kind of hydrogen bond which may have a critical effect on the lattice symmetry and magnetic structure.
    [1]

    Zheng X G 2008 Prog. Phys. 28 314 (in Chinese) [郑旭光 2008 物理学进展 28 314]

    [2]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [3]

    Zheng X G, Otabe E S 2004 Solid State Commun. 130 107

    [4]

    Zheng X G, Xu C N 2004 Solid State Commun. 131 509

    [5]

    Zheng X G, Kawae T, Kashitani Y, Li C S, Tateiwa N, Takeda K, Yamada H, Xu C N, Ren Y 2005 Phys. Rev. B 71 052409

    [6]

    Zheng X G, Mori T, Nishiyama K, Higemoto W, Yamada H, Nishikubo K, Xu C N 2005 Phys. Rev. B 71 174404

    [7]

    Zheng X G, Kubozono H, Nishiyama K, Higemoto W, Kawae T, Koda A, Xu C N 2005 Phys. Rev. Lett. 95 057201

    [8]

    Zheng X G, Yamashita T, Hagihala M, Fujihala M, Kawae T 2009 Physica B 404 680

    [9]

    Hagihala M, Zheng X G, Toriyi T, Kawae T 2007 J. Phys.: Condens. Matter 19 145281

    [10]

    Zheng X G, Hagihala M, Toriyi T 2007 J. Magn. Magn. Mater. 310 1288

    [11]

    Zheng X G, Kawae T, Yamada H, Nishiyama K, Xu C N 2006 Phys. Rev. Lett. 97 247204

    [12]

    Hagihala M, Zheng X G, Kawae T 2009 Physica B 404 671

    [13]

    Fujihala M, Hagihala M, Zheng X G, Kawae T 2009 Physica B 404 674

    [14]

    Kubo H, Zenmyo K, Tokita M, Hamasaki T, Hagihala M, Zheng X G 2008 J. Phys. Soc. Jpn. 77 013704

    [15]

    Tokita M and Zenmyo K 2009 J. Phys.: Conf. Series 150 042208

    [16]

    Zenmyo K, Tokita M 2009 J. Magn. Magn. Mater. 321 2192

    [17]

    Bi C Z, Ma J Y, Zhao B R, Tang Z, Yin D, Li C Z, Yao D Z, Shi J, Qiu X G 2005 J. Phys.: Condens. Matter 17 5225

    [18]

    Martens W, Frost R L, Williams P A 2003 N. Jb. Miner. Abh. 178 197

    [19]

    Zheng X G, Hagihala M, Fujihala M, Kawae T 2009 J. Phys.: Conf. Series. 145 012034

    [20]

    Ergun H B, Gehring K A, Gehring G A 1976 J. Phys.C: Solid State Phys. 9 1101

    [21]

    Jongenelis A P J M, van den Berg T H M, Schmidt J, van der Avoird A 1989 J. Phys.: Condens. Matter 1 5051

    [22]

    Lutz H D 1995 Struct. Bond. 82 85

    [23]

    Beckenkamp K, Lutz H D 1992 J. Mol. Struct. 270 393

    [24]

    Zwier T S 2004 Science 304 1119

    [25]

    Sun X Z, Li B, Zhou Q B, Zhang H B, Cheng G Z, Zhou X H 2008 Crystal Growth Design 8 2970

    [26]

    Mohti F 2006 J. Mol. Struct. THEO 770 179

    [27]

    Nakamoto K 2009 Infrared and Raman Spectra of inorganic and coordination compounds, Part A & B 2009 Sixth edition, John Wiley & Sons Inc.

    [28]

    Chen H J, Shi L H, Yan W B, Chen G F, Shen J, Li Y X 2009 Chin. Phys. B 18 2372

    [29]

    Yang Y, Liu Y L, Zhu K, Zhang L Y, Ma S Y, Liu J, Jiang Y J 2010 Chin. Phys. B 19 037802

    [30]

    Hu D W, Wang Z P, Zhang H J, Xu X G, Wang J Y, Shao Z S 2008 Acta Phys. Sin. 57 1714 (in Chinese) [胡大伟、王正平、 张怀金、许心光、王继扬、邵宗书 2008 57 1714]

    [31]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese)[房振乾、胡 明、张 伟、张绪瑞 2008 57 103]

    [32]

    Zhang X, Wan S M, Yin S T, You J L, Zhang R B 2009 Acta Phys. Sin. 58 373 (in Chinese)[张 霞、万松明、殷绍唐、尤静林、张荣波 2009 58 373]

  • [1]

    Zheng X G 2008 Prog. Phys. 28 314 (in Chinese) [郑旭光 2008 物理学进展 28 314]

    [2]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [3]

    Zheng X G, Otabe E S 2004 Solid State Commun. 130 107

    [4]

    Zheng X G, Xu C N 2004 Solid State Commun. 131 509

    [5]

    Zheng X G, Kawae T, Kashitani Y, Li C S, Tateiwa N, Takeda K, Yamada H, Xu C N, Ren Y 2005 Phys. Rev. B 71 052409

    [6]

    Zheng X G, Mori T, Nishiyama K, Higemoto W, Yamada H, Nishikubo K, Xu C N 2005 Phys. Rev. B 71 174404

    [7]

    Zheng X G, Kubozono H, Nishiyama K, Higemoto W, Kawae T, Koda A, Xu C N 2005 Phys. Rev. Lett. 95 057201

    [8]

    Zheng X G, Yamashita T, Hagihala M, Fujihala M, Kawae T 2009 Physica B 404 680

    [9]

    Hagihala M, Zheng X G, Toriyi T, Kawae T 2007 J. Phys.: Condens. Matter 19 145281

    [10]

    Zheng X G, Hagihala M, Toriyi T 2007 J. Magn. Magn. Mater. 310 1288

    [11]

    Zheng X G, Kawae T, Yamada H, Nishiyama K, Xu C N 2006 Phys. Rev. Lett. 97 247204

    [12]

    Hagihala M, Zheng X G, Kawae T 2009 Physica B 404 671

    [13]

    Fujihala M, Hagihala M, Zheng X G, Kawae T 2009 Physica B 404 674

    [14]

    Kubo H, Zenmyo K, Tokita M, Hamasaki T, Hagihala M, Zheng X G 2008 J. Phys. Soc. Jpn. 77 013704

    [15]

    Tokita M and Zenmyo K 2009 J. Phys.: Conf. Series 150 042208

    [16]

    Zenmyo K, Tokita M 2009 J. Magn. Magn. Mater. 321 2192

    [17]

    Bi C Z, Ma J Y, Zhao B R, Tang Z, Yin D, Li C Z, Yao D Z, Shi J, Qiu X G 2005 J. Phys.: Condens. Matter 17 5225

    [18]

    Martens W, Frost R L, Williams P A 2003 N. Jb. Miner. Abh. 178 197

    [19]

    Zheng X G, Hagihala M, Fujihala M, Kawae T 2009 J. Phys.: Conf. Series. 145 012034

    [20]

    Ergun H B, Gehring K A, Gehring G A 1976 J. Phys.C: Solid State Phys. 9 1101

    [21]

    Jongenelis A P J M, van den Berg T H M, Schmidt J, van der Avoird A 1989 J. Phys.: Condens. Matter 1 5051

    [22]

    Lutz H D 1995 Struct. Bond. 82 85

    [23]

    Beckenkamp K, Lutz H D 1992 J. Mol. Struct. 270 393

    [24]

    Zwier T S 2004 Science 304 1119

    [25]

    Sun X Z, Li B, Zhou Q B, Zhang H B, Cheng G Z, Zhou X H 2008 Crystal Growth Design 8 2970

    [26]

    Mohti F 2006 J. Mol. Struct. THEO 770 179

    [27]

    Nakamoto K 2009 Infrared and Raman Spectra of inorganic and coordination compounds, Part A & B 2009 Sixth edition, John Wiley & Sons Inc.

    [28]

    Chen H J, Shi L H, Yan W B, Chen G F, Shen J, Li Y X 2009 Chin. Phys. B 18 2372

    [29]

    Yang Y, Liu Y L, Zhu K, Zhang L Y, Ma S Y, Liu J, Jiang Y J 2010 Chin. Phys. B 19 037802

    [30]

    Hu D W, Wang Z P, Zhang H J, Xu X G, Wang J Y, Shao Z S 2008 Acta Phys. Sin. 57 1714 (in Chinese) [胡大伟、王正平、 张怀金、许心光、王继扬、邵宗书 2008 57 1714]

    [31]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese)[房振乾、胡 明、张 伟、张绪瑞 2008 57 103]

    [32]

    Zhang X, Wan S M, Yin S T, You J L, Zhang R B 2009 Acta Phys. Sin. 58 373 (in Chinese)[张 霞、万松明、殷绍唐、尤静林、张荣波 2009 58 373]

  • [1] Li Shao-Min, Sun Li-Qun. Measurement of methane gas with high absorbance based on modified wavelength modulation spectroscopy. Acta Physica Sinica, 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [2] Shaomin Li,  Liqun Sun. Large absorbance methane measurement based on wavelength modulation spectroscopy. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [3] Qiu Zi-Yang, Chen Yan, Qiu Xiang-Gang. Infrared spectroscopic study of topological material BaMnSb2. Acta Physica Sinica, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [4] Qiu Zi-Heng, Ahmed Yousif Ghazal, Long Jin-You, Zhang Song. Theoretical studies on molecular conformers and infrared spectra of triethylamine. Acta Physica Sinica, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [5] Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin. Spectral analysis and density functional theory study of tert-butylhydroquinone. Acta Physica Sinica, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [6] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] Xu Bing, Qiu Zi-Yang, Yang Run, Dai Yao-Min, Qiu Xiang-Gang. Optical properties of topological semimetals. Acta Physica Sinica, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [8] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [9] Wang An-Jing, Fang Yong-Hua, Li Da-Cheng, Cui Fang-Xiao, Wu Jun, Liu Jia-Xiang, Li Yang-Yu, Zhao Yan-Dong. Simulation of pollutant-gas-cloud infrared spectra under plane-array detecting. Acta Physica Sinica, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [10] Yan Bing-Min, Jia Xiao-Peng, Qin Jie-Ming, Sun Shi-Shuai, Zhou Zhen-Xiang, Fang Chao, Ma Hong-An. Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen co-doped diamond crystals. Acta Physica Sinica, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [11] Liu Jiang-Ping, Li Jun, Liu Yuan-Qiong, Lei Hai-Le, Wei Jian-Jun. Infrared absorption of deuterium molecules at low temperature. Acta Physica Sinica, 2014, 63(2): 023301. doi: 10.7498/aps.63.023301
    [12] Sun You-Wen, Xie Pin-Hua, Xu Jin, Zhou Hai-Jin, Liu Cheng, Wang Yang, Liu Wen-Qing, Si Fu-Qi, Zeng Yi. Measurement of atmospheric CO2 vertical column density using weighting function modified differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [13] Li Xin, Yang Meng-Shi, Ye Zhi-Peng, Chen Liang, Xu Can, Chu Xiu-Xiang. DFT research on the IR spectrum of glycine tryptophan oligopeptides chain. Acta Physica Sinica, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [14] Liu Jiang-Ping, Bi Peng, Lei Hai-Le, Li Jun, Wei Jian-Jun. Infrared absorption spectrum of solid deuterium at near-triple point temperature. Acta Physica Sinica, 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [15] Sun Jie, Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Dai Shi-Xun, Zhang Wei, Song Bao-An, Shen Xiang, Xu Tie-Feng. Effect of PbI2 on optical properties of Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [16] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [17] Bi Peng, Liu Yuan-Qiong, Tang Yong-Jian, Yang Xiang-Dong, Lei Hai-Le. Infrared absorption of liquid-hydrogen planar cryotargets. Acta Physica Sinica, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [18] Sun You-Mei, Liu Jie, Zhang Chong-Hong, Wang Zhi-Guang, Jin Yun-Fan, Duan Jing-Lai, Song Yin. Electronic energy loss of the latent track in heavy ion-irradiated polyimide. Acta Physica Sinica, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [19] Yang Wu-Bao, Fan Song-Hua, Zhang Gu-Ling, Ma Pei-Ning, Zhang Shou-Zhong, Du Jian. Investigation of diamond-like-carbon films prepared by unbalanced magnetron sputtering. Acta Physica Sinica, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [20] LING ZHI-HUA. STUDY OF POLARIZED FT-IR FOR ANTIFERROELECTRIC LIQUID CRYSTAL TFMHxPOCBC-D2 IN A HOMEOTROPICALLY ALIGNED CELL. Acta Physica Sinica, 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
Metrics
  • Abstract views:  9055
  • PDF Downloads:  648
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2010
  • Accepted Date:  05 July 2010
  • Published Online:  15 March 2011

/

返回文章
返回
Baidu
map