Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics of low energy electrons transmitting through straight glass capillary: Tilt angle dependence

Li Peng-Fei Yuan Hua Cheng Zi-Dong Qian Li-Bing Liu Zhong-Lin Jin Bo Ha Shuai Zhang Hao-Wen Wan Cheng-Liang Cui Ying Ma Yue Yang Zhi-Hu Lu Di Reinhold Schuch Li Ming Zhang Hong-Qiang Chen Xi-Meng

Citation:

Dynamics of low energy electrons transmitting through straight glass capillary: Tilt angle dependence

Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Zhang Hao-Wen, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng
PDF
HTML
Get Citation
  • It is a hot topic that using glass capillary to focus and shape the charged particle beam, for it is inexpensive and simple. There are the cases that single glass capillaries are used to make the microbeam of the positive ions. When it comes to electrons, their transmitting through insulating capillaries is complex and the attempt to use the glass capillary to produce electron beams in the size of micrometer needs further exploring.In this paper, the charging-up process of the 900-eV electrons transmitting through a glass capillary with the grounded conductive-coated outer surface is reported. Two-dimensional angular distributions of the transmitted electrons and their time evolutions are measured for the cases of various tilt angles of glass tube. It is found that there are a considerable number of transmitted electrons at the tilt angle exceeding the geometrical opening angle (1°) of the glass tube. The intensity of transmitted electrons for large tilt angle (i.e. –1.15°) can be considered as first falling to zero, then keeping zero for a long time, finally rising to a certain stable value. Correspondingly, the angular distribution center experiences moving towards negative-positive-negative-settled. The energy losses are measured for various tilt angles. The larger the tilt angles, the larger the energy loss of transmitted electrons is. To better understand the physics behind the observed phenomena, the simulations of the energy loss for transmitted electrons at various tilt angles are performed by the Monte Carlo method. The comparation between the simulated energy losses and the measured energy losses shows that the experimental results are well explained by multiple deflections from the wall.
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn ; Chen Xi-Meng, chenxm@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1732269, 11805169), the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2021-sp41), and the Swedish Foundation for International Cooperation in Research and Higher Education (Grant No. IB2018-8071)
    [1]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [2]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar

    [3]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar

    [4]

    Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar

    [5]

    Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar

    [6]

    Wang W, Chen J, Yu D Y, Yang B, Wu Y H, Zhang M W, Ruan F F, Cai X H 2011 Phys. Scri. T144Google Scholar

    [7]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [8]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar

    [9]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Inst. Meth. Phys. Res. B 382 60Google Scholar

    [10]

    钱立冰, 李鹏飞, 靳博, 等 2017 66 124101Google Scholar

    Qian L B, Li P F, Jin B, et al. 2017 Acta Phys. Sin. 66 124101Google Scholar

    [11]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [12]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [13]

    Ikeda T 2020 Quan. Beam Sci. 4 22Google Scholar

    [14]

    李嘉庆, 王建中, 王旭飞, 张杰雄, 张伟, 张斌, 邵春林, 施立群 2013 原子能科学与技术 47 1917Google Scholar

    Li J Q, Wang J Z, Wang X F, Zhang J X, Zhang W, Zhang B, Shao C L, Shi L Q 2013 Atom. Ener. Sci. Tech. 47 1917Google Scholar

    [15]

    Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Inst. Meth. Phys. Res. B 273 237Google Scholar

    [16]

    Hasegawa J, Shiba S, Fukuda H, Oguri Y 2008 Nucl. Inst. Meth. Phys. Res. B 266 2125Google Scholar

    [17]

    Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T 2008 Nucl. Inst. Meth. Phys. Res. B 266 4027Google Scholar

    [18]

    Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Inst. Meth. Phys. Res. B 267 2277Google Scholar

    [19]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [20]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [21]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [22]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [23]

    Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [24]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [25]

    Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [26]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [27]

    Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2015 Phys. Rev. A 91 012714Google Scholar

    [28]

    Liu S D, Zhao Y T, Wang Y Y 2017 Chin. Phys. B 26 106104Google Scholar

    [29]

    Xue Y, Yu D, Liu J, Zhang M, Yang B, Zhang Y, Cai X 2015 Appl. Phys. Lett. 107 254102Google Scholar

    [30]

    Stolterfoht N, Tanis J 2018 Nucl. Inst. Meth. Phys. Res. B 421 32Google Scholar

    [31]

    Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar

    [32]

    Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Inst. Meth. Phys. Res. B 279 190Google Scholar

    [33]

    Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [34]

    Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 298 1Google Scholar

    [35]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 317 105Google Scholar

    [36]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2015 Phys. Rev. A 92 012703Google Scholar

    [37]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [38]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [39]

    Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO (version 3.3), https://www.gel.usherbrooke.ca/casino/index.html

  • 图 1  实验设备示意图

    Figure 1.  A schematic drawing of the experimental setup.

    图 2  900 eV电子涂导电胶玻璃毛细管的穿透率随倾角变化的分布曲线

    Figure 2.  The steady-state values of the transmission rate as a function of the tilt angle for 900 eV electrons through conductive-coated glass capillary.

    图 3  不同倾角下, 900 eV电子对涂导电胶的玻璃毛细管的充电过程中, 穿透率随时间的演化曲线

    Figure 3.  The measured time evolution of the transmission rates of the charge-up process in the glass capillary at various tilt angles for 900 eV electrons.

    图 4  不同倾角下, 900 eV电子对涂导电胶的玻璃毛细管的充电过程中选取的穿透电子的二维角分布图像 (a) –0.15°; (b) –0.4°; (c) –1.15°

    Figure 4.  The 2D images of electron angular distribution at different stages during the charge-up process at various tilt angles for 900 eV electrons: (a) –0.15°; (b) –0.4°; (c) –1.15°.

    图 5  在–0.15°, –0.4°和–1.15°倾角下, 900 eV电子对涂导电胶的玻璃毛细管的充电过程中, 穿透电子在ϕ平面的投影中心随时间的演化曲线. 数据空白处为等待时间

    Figure 5.  The time evolution of the projection center of the transmitted electron angular distribution on the ϕ-plane during the charge-up process at various tilt angles (–0.15°, –0.4° and –1.15°) for 900 eV electrons. The blanks of data are waiting time.

    图 6  充电达到稳定阶段后, 900 eV能量的电子穿越不同倾角(–0.15°, –0.4°和–1.15°)玻璃管的穿透电子能谱图

    Figure 6.  The energy spectrum of transmitted electrons for 900 eV electrons at various tilt angles (–0.15°, –0.4° and –1.15°) in the steady stage.

    图 7  充电完成达到稳定阶段后, 电子在涂导电胶的玻璃毛细管内的反射轨迹示意, 其中红线为电子轨迹

    Figure 7.  The diagrams for the trajectories of the transmitted electrons through the conductive-coated glass capillary in the steady stage, where the red line is electron trajectory.

    Baidu
  • [1]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [2]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar

    [3]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar

    [4]

    Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar

    [5]

    Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar

    [6]

    Wang W, Chen J, Yu D Y, Yang B, Wu Y H, Zhang M W, Ruan F F, Cai X H 2011 Phys. Scri. T144Google Scholar

    [7]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [8]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar

    [9]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Inst. Meth. Phys. Res. B 382 60Google Scholar

    [10]

    钱立冰, 李鹏飞, 靳博, 等 2017 66 124101Google Scholar

    Qian L B, Li P F, Jin B, et al. 2017 Acta Phys. Sin. 66 124101Google Scholar

    [11]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [12]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [13]

    Ikeda T 2020 Quan. Beam Sci. 4 22Google Scholar

    [14]

    李嘉庆, 王建中, 王旭飞, 张杰雄, 张伟, 张斌, 邵春林, 施立群 2013 原子能科学与技术 47 1917Google Scholar

    Li J Q, Wang J Z, Wang X F, Zhang J X, Zhang W, Zhang B, Shao C L, Shi L Q 2013 Atom. Ener. Sci. Tech. 47 1917Google Scholar

    [15]

    Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Inst. Meth. Phys. Res. B 273 237Google Scholar

    [16]

    Hasegawa J, Shiba S, Fukuda H, Oguri Y 2008 Nucl. Inst. Meth. Phys. Res. B 266 2125Google Scholar

    [17]

    Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T 2008 Nucl. Inst. Meth. Phys. Res. B 266 4027Google Scholar

    [18]

    Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Inst. Meth. Phys. Res. B 267 2277Google Scholar

    [19]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [20]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [21]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [22]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [23]

    Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [24]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [25]

    Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [26]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [27]

    Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2015 Phys. Rev. A 91 012714Google Scholar

    [28]

    Liu S D, Zhao Y T, Wang Y Y 2017 Chin. Phys. B 26 106104Google Scholar

    [29]

    Xue Y, Yu D, Liu J, Zhang M, Yang B, Zhang Y, Cai X 2015 Appl. Phys. Lett. 107 254102Google Scholar

    [30]

    Stolterfoht N, Tanis J 2018 Nucl. Inst. Meth. Phys. Res. B 421 32Google Scholar

    [31]

    Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar

    [32]

    Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Inst. Meth. Phys. Res. B 279 190Google Scholar

    [33]

    Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [34]

    Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 298 1Google Scholar

    [35]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 317 105Google Scholar

    [36]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2015 Phys. Rev. A 92 012703Google Scholar

    [37]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [38]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [39]

    Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO (version 3.3), https://www.gel.usherbrooke.ca/casino/index.html

  • [1] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [2] Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng. Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding. Acta Physica Sinica, 2022, 71(7): 074101. doi: 10.7498/aps.71.20212036
    [3] Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping. Transport process and energy loss of heavy ions in silicon carbide. Acta Physica Sinica, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [4] Chen Yan-Hong, Cheng Rui, Zhang Min, Zhou Xian-Ming, Zhao Yong-Tao, Wang Yu-Yu, Lei Yu, Ma Peng-Peng, Wang Zhao, Ren Jie-Ru, Ma Xin-Wen, Xiao Guo-Qing. Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss. Acta Physica Sinica, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [5] Xue Dan, Liu Jin-Yuan, Li Shu-Han. Charging mechanism and application of lunar dust grains. Acta Physica Sinica, 2018, 67(13): 135201. doi: 10.7498/aps.67.20180047
    [6] Qin Li, Guo Hong-Xia, Zhang Feng-Qi, Sheng Jiang-Kun, Ouyang Xiao-Ping, Zhong Xiang-Li, Ding Li-Li, Luo Yin-Hong, Zhang Yang, Ju An-An. Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons. Acta Physica Sinica, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [7] Chen Feng, Zheng Na, Xu Hai-Bo. Density reconstruction based on energy loss in proton radiography. Acta Physica Sinica, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [8] Zhang Ning, Zhang Xin, Yang Ai-Xiang, Ba De-Dong, Feng Zhan-Zu, Chen Yi-Feng, Shao Jian-Xiong, Chen Xi-Meng. Damage effects of proton beam irradiation on single layer graphene. Acta Physica Sinica, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [9] Qian Li-Bing, Li Peng-Fei, Jin Bo, Jin Ding-Kun, Song Guang-Yin, Zhang Qi, Wei Long, Niu Ben, Wan Cheng-Liang, Zhou Chun-Lin, Arnold Milenko Müller, Max Dobeli, Song Zhang-Yong, Yang Zhi-Hu, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng. Transmission of electrons through the conical glass capillary with the grounded conducting outer surface. Acta Physica Sinica, 2017, 66(12): 124101. doi: 10.7498/aps.66.124101
    [10] Wang Cheng-Wei, Zhao Quan-Zhong, Qian Jing, Huang Yuan-Yuan, Wang Guan-De, Li Yang-Bo, Bai Feng, Fan Wen-Zhong, Li Hong-Jin. Measuring the internal temperature of dielectrics machined by the ultrashort laser pulse through the black-body irradiation method. Acta Physica Sinica, 2016, 65(12): 125201. doi: 10.7498/aps.65.125201
    [11] Wan Cheng-Liang, Li Peng-Fei, Qian Li-Bing, Jin Bo, Song Guang-Yin, Gao Zhi-Min, Zhou Li-Hua, Zhang Qi, Song Zhang-Yong, Yang Zhi-Hu, Shao Jian-Xiong, Cui Ying, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of slow electrons transmitting through straight glass capillary and tapered glass capillary. Acta Physica Sinica, 2016, 65(20): 204103. doi: 10.7498/aps.65.204103
    [12] Deng Jia-Chuan, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Peng Hai-Bo, Wang Yu-Yu, Lei Yu, Liu Shi-Dong, Sun Yuan-Bo, Ren Jie-Ru, Xiao Jia-Hao, Ma Li-Dong, Xiao Guo-Qing, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. Investigation on the energy loss in low energy protons interacting with hydrogen plasma. Acta Physica Sinica, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [13] Gao Rui-Jun, Ge Zi-Ming. Triple differential cross sections of the (e, 2e) reaction for electron impact Ar in a coplanar asymmetric geometry. Acta Physica Sinica, 2010, 59(3): 1702-1706. doi: 10.7498/aps.59.1702
    [14] Zhang Tao. A cause of energy exchange between light and electron. Acta Physica Sinica, 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [15] Yang Huan, Gao Kuang, Zhang Sui-Meng. A theoretical study on (e, 2e) process for helium in large energy loss and close to minimum momentum transfer geometry. Acta Physica Sinica, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [16] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [17] Xia Zhi-Lin, Fan Zheng-Xiu, Shao Jian-Da. Electrons-phonons collision velocity in films radiated by laser. Acta Physica Sinica, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [18] Yang Hai-Liang, Qiu Ai-Ci, Li Jing-Ya, Sun Jian-Feng, He Xiao-Ping, Tang Jun-Ping, Wang Hai-Yang, Huang Jian-Jun, Ren Shu-Qing, Zou Li-Li, Yang Li. Energy spectra of high-power ion beams measured with a pile of thin films on FLASH Ⅱ. Acta Physica Sinica, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [19] CHENG XING-KUI, ZHOU JUN-MING, HUANG QI. WAVING OF ELECTRON IN SUPERLATTICE. Acta Physica Sinica, 2001, 50(3): 536-539. doi: 10.7498/aps.50.536
    [20] HE BIN, CHANG TIE-QIANG, ZHANG JIA-TAI, XU LIN-BAO. INVESTIGATION OF THE LONGITUDINAL MOTION OF ELECTRONS IN THE PLASMAS WITH ULTRA-INTENSE LASER PULSE. Acta Physica Sinica, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
Metrics
  • Abstract views:  4087
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2021
  • Accepted Date:  10 January 2022
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回
Baidu
map