Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss

Chen Yan-Hong Cheng Rui Zhang Min Zhou Xian-Ming Zhao Yong-Tao Wang Yu-Yu Lei Yu Ma Peng-Peng Wang Zhao Ren Jie-Ru Ma Xin-Wen Xiao Guo-Qing

Citation:

Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss

Chen Yan-Hong, Cheng Rui, Zhang Min, Zhou Xian-Ming, Zhao Yong-Tao, Wang Yu-Yu, Lei Yu, Ma Peng-Peng, Wang Zhao, Ren Jie-Ru, Ma Xin-Wen, Xiao Guo-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The investigations of interaction processes between ion beams and gas and between ion beams and plasma play important roles in atomic physics, astrophysics, high energy density physics, and inertial confinement fusion.The atomic density of target is one of the key experimental parameters which may determine the interaction mechanism and experimental results.How to precisely diagnose the atomic density of target in different matter states, like gas phase and plasma phase, is challenging work on the experiments in laboratory.Conventionally the vacuum gauges are used to measure the pressure inside the gas target, but the accuracy is limited for a complex target system and they can hardly work in a strong radiation surrounding, especially in plasma where the high temperature can physically damage the gauges.Therefore we propose a new method to measure the atomic densities for both gas target and plasma target based on the heavy ion beam accelerator facility at the Institute of Modern Physics, Chinese Academy of Sciences.In our experiment the protons are extracted from an electron cyclotron resonance ion source (ECRIS) and accelerated to 100 keV then transmitted to the target.A two-stage differential pumping system is constructed to keep 10-7 mbar order of magnitude in beam line when the gas is filled into the target area where the pressure could increase to higher than 1 mbar.A 45 dipole magnet is used to bend the protons which have passed through the gas.The energy is determined by the different positions of protons at the position-sensitive detector which is placed at the end of magnet.Consequently the energy losses of protons at different pressures are obtained.There have been proposed many theories for calculating the energy loss of protons in gas, and we chose the very popular code named SRIM to simulate the experimental case. Finally the effective linear atomic density of target along the ion beam trajectory in the target area is obtained.For comparison, the conventional vacuum gauges (one is the hot cathode gauge-IonIVac ITR 90 and the other is capacitance diaphragm gauge-Varian CDG-500) are simultaneously used in the experiment.The results show that the recalibrated effective pressure obtained by the energy loss is close to the pressure measured by Varian CDG-500 but much lower than the pressure from IonIVac ITR 90.Only after the detection efficiency correction, could the corrected results of IonIVac ITR 90 be coincident with the effective pressure obtained according to energy loss.Moreover we find that the effective atomic density determined by the protons energy loss shows that these advantages over the conventional gauges are not only the high accuracy and reliability but also the in-situ measurement, high temporal resolution and the ability to work in the complex radiation and hot plasma environment.These properties may play a great role in the experimental researches and relevant topics.
      Corresponding author: Cheng Rui, chengrui@impcas.ac.cn;zhaoyongtao@xjtu.edu.cn ; Zhao Yong-Tao, chengrui@impcas.ac.cn;zhaoyongtao@xjtu.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017YFA0402303) and the National Natural Science Foundation of China (Grant Nos. U1532263, 11505248, 11375034, 11775042, 11775278, 11605147).
    [1]

    Bohr N 1913 Philos. Mag. 25 10

    [2]

    Hoffmann D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990 Phys. Rev. A 42 2313

    [3]

    Jacoby J, Hoffmann D H H, Laux W, Mller R W, Wahl H, Weyrich K, Boggasch E, Heimric B, Stöckl C, Wetzler H, Miyamoto S 1995 Phys. Rev. Lett. 74 1550

    [4]

    Grande P L, Schiwiztz G 1998 Phys. Rev. A 58 3796

    [5]

    Bethe H 1930 Ann. Phys. 397 325

    [6]

    Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch D, Maynard G 1990 Laser Particle Beams 8 575

    [7]

    Koshkarev D G 2002 Las. Part. Beams 20 595

    [8]

    Deutsch C, Maynard G, Bimbot R, Gardes D, DellaNegra S, Dumail M, Kubica B, Richard A, Rivet M F, Servajean A, Fleurier C, Sanba A, Hoffmann D H H, Weyrich K, Wahl H 1989 Nucl. Inst. Meth. Phys. Res. A 278 38

    [9]

    Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R,Haas R,Kunze H, Bimbot R, Gardes D, Rievt M F, Deutsch C, Fleurier C 1989 Nucl. Inst. Meth. Phys. Res. A 278 52

    [10]

    Servajean A, Gardes D, Bimbot R, Dumail M, Kubicard B, Richard A, Rivet M F, Fleurier C, Hong D, Deutsch C, Maynard G 1992 J. Appl. Phys. 71 2587

    [11]

    Casas D, Barriga-Carrasco M D, Rubio J, Moralea R 2014 Glob. Nest. J. 16 1085

    [12]

    Belyaev G, Basko M, Cherkasov A, Golubev A, Fertman A, Roudskoy I, Savin S, Sharkov B, Turtikov V, Arzumanov A, Borisenko A, Gorlachev I, Lysukhin S, Hoffmann D H H, Tauschwitz A 1996 Phys. Rev. E 53 2701

    [13]

    Hoffmann D H H, Weyrich K, Wahl H, Peter T, Meyer T V J, Jacoby J, Bimbot R, Gardès D, Rivet M, Dumail M, Fleurier C, Sanba A, Deutsch C, Maynard G, Noll R, Haas R, Arnold R, Masuimann S 1988 Z. Phys. A:Atom. Nucl. 330 339

    [14]

    Wang Y N, Ma T C, Gong Y 1993 Acta Phys. Sin. 42 631 (in Chinese)[王友年, 马腾才, 宫野 1993 42 631]

    [15]

    Tsuneta S 1996 Astrophys. J. 456 840

    [16]

    Deng J C, Zhao Y T, Cheng R, Zhou X M, Peng H B, Wang Y Y, Lei Y, Liu S D, Sun Y B, Ren J R, Xiao J H, Ma L D, Xiao G Q, Gavrilin R, Savin S, Golubev A, Hoffmann D H H 2015 Acta Phys. Sin. 64 145202 (in Chinese)[邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, Gavrilin R, Savin S, Golubev A,Hoffmann D H H 2015 64 145202]

    [17]

    Cheng R, Zhou X M, Sun Y B, Lei Y, Wang X, Xu G 2011 Phys. Scr. T114 014015

    [18]

    Lu T X 2000 Atomic Nuclear Physics (Vol. 2) (Beijing:Atomic Energy Press) pp55-56 (in Chinese)[卢希庭 2000 原子核物理(第二版)(北京:原子能出版社)第55–56页]

  • [1]

    Bohr N 1913 Philos. Mag. 25 10

    [2]

    Hoffmann D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990 Phys. Rev. A 42 2313

    [3]

    Jacoby J, Hoffmann D H H, Laux W, Mller R W, Wahl H, Weyrich K, Boggasch E, Heimric B, Stöckl C, Wetzler H, Miyamoto S 1995 Phys. Rev. Lett. 74 1550

    [4]

    Grande P L, Schiwiztz G 1998 Phys. Rev. A 58 3796

    [5]

    Bethe H 1930 Ann. Phys. 397 325

    [6]

    Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch D, Maynard G 1990 Laser Particle Beams 8 575

    [7]

    Koshkarev D G 2002 Las. Part. Beams 20 595

    [8]

    Deutsch C, Maynard G, Bimbot R, Gardes D, DellaNegra S, Dumail M, Kubica B, Richard A, Rivet M F, Servajean A, Fleurier C, Sanba A, Hoffmann D H H, Weyrich K, Wahl H 1989 Nucl. Inst. Meth. Phys. Res. A 278 38

    [9]

    Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R,Haas R,Kunze H, Bimbot R, Gardes D, Rievt M F, Deutsch C, Fleurier C 1989 Nucl. Inst. Meth. Phys. Res. A 278 52

    [10]

    Servajean A, Gardes D, Bimbot R, Dumail M, Kubicard B, Richard A, Rivet M F, Fleurier C, Hong D, Deutsch C, Maynard G 1992 J. Appl. Phys. 71 2587

    [11]

    Casas D, Barriga-Carrasco M D, Rubio J, Moralea R 2014 Glob. Nest. J. 16 1085

    [12]

    Belyaev G, Basko M, Cherkasov A, Golubev A, Fertman A, Roudskoy I, Savin S, Sharkov B, Turtikov V, Arzumanov A, Borisenko A, Gorlachev I, Lysukhin S, Hoffmann D H H, Tauschwitz A 1996 Phys. Rev. E 53 2701

    [13]

    Hoffmann D H H, Weyrich K, Wahl H, Peter T, Meyer T V J, Jacoby J, Bimbot R, Gardès D, Rivet M, Dumail M, Fleurier C, Sanba A, Deutsch C, Maynard G, Noll R, Haas R, Arnold R, Masuimann S 1988 Z. Phys. A:Atom. Nucl. 330 339

    [14]

    Wang Y N, Ma T C, Gong Y 1993 Acta Phys. Sin. 42 631 (in Chinese)[王友年, 马腾才, 宫野 1993 42 631]

    [15]

    Tsuneta S 1996 Astrophys. J. 456 840

    [16]

    Deng J C, Zhao Y T, Cheng R, Zhou X M, Peng H B, Wang Y Y, Lei Y, Liu S D, Sun Y B, Ren J R, Xiao J H, Ma L D, Xiao G Q, Gavrilin R, Savin S, Golubev A, Hoffmann D H H 2015 Acta Phys. Sin. 64 145202 (in Chinese)[邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, Gavrilin R, Savin S, Golubev A,Hoffmann D H H 2015 64 145202]

    [17]

    Cheng R, Zhou X M, Sun Y B, Lei Y, Wang X, Xu G 2011 Phys. Scr. T114 014015

    [18]

    Lu T X 2000 Atomic Nuclear Physics (Vol. 2) (Beijing:Atomic Energy Press) pp55-56 (in Chinese)[卢希庭 2000 原子核物理(第二版)(北京:原子能出版社)第55–56页]

  • [1] Chen Yan-Hong, Wang Zhao, Zhou Ze-Xian, Tao Ke-Wei, Jin Xue-Jian, Shi Lu-Lin, Wang Guo-Dong, Yu Pei, Lei Yu, Wu Xiao-Xia, Cheng Rui, Yang Jie. Diagnosis of bound electron density by measuring energy loss of proton beam in partially ionized plasma target. Acta Physica Sinica, 2024, 73(7): 073401. doi: 10.7498/aps.73.20231736
    [2] He Min-Qing, Zhang Hua, Li Ming-Qiang, Peng Li, Zhou Cang-Tao. Proton beam energy deposition in fast ignition and production of protons on Shenguang II upgraded device. Acta Physica Sinica, 2023, 72(9): 095201. doi: 10.7498/aps.72.20222005
    [3] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [4] Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Zhang Hao-Wen, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of low energy electrons transmitting through straight glass capillary: Tilt angle dependence. Acta Physica Sinica, 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [5] Zhou Bin, Yu Quan-Zhi, Hu Zhi-Liang, Chen Liang, Zhang Xue-Ying, Liang Tian-Jiao. Calculation and verification for energetic proton energy deposition in spallation target. Acta Physica Sinica, 2021, 70(5): 052401. doi: 10.7498/aps.70.20201504
    [6] You Zhi-Ming, Wang Jie, Gao Yong, Fan Jia-Kun, Zhang Jing, Hu Yao-Cheng, Wang Sheng, Xu Zhang-Lian, Zhang Qi. Gas density evolution in beam screen of super proton-proton collider. Acta Physica Sinica, 2021, 70(16): 166802. doi: 10.7498/aps.70.20201594
    [7] Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping. Transport process and energy loss of heavy ions in silicon carbide. Acta Physica Sinica, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [8] Han Bo, Liang Ya-Qiong. Measurement of magnetic field of capacitor-coil target using proton radiography. Acta Physica Sinica, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [9] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] Chen Feng, Zheng Na, Xu Hai-Bo. Density reconstruction based on energy loss in proton radiography. Acta Physica Sinica, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [11] Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam. Acta Physica Sinica, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [12] Zhang Ning, Zhang Xin, Yang Ai-Xiang, Ba De-Dong, Feng Zhan-Zu, Chen Yi-Feng, Shao Jian-Xiong, Chen Xi-Meng. Damage effects of proton beam irradiation on single layer graphene. Acta Physica Sinica, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [13] Deng Jia-Chuan, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Peng Hai-Bo, Wang Yu-Yu, Lei Yu, Liu Shi-Dong, Sun Yuan-Bo, Ren Jie-Ru, Xiao Jia-Hao, Ma Li-Dong, Xiao Guo-Qing, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. Investigation on the energy loss in low energy protons interacting with hydrogen plasma. Acta Physica Sinica, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [14] Gao Rui-Jun, Ge Zi-Ming. Triple differential cross sections of the (e, 2e) reaction for electron impact Ar in a coplanar asymmetric geometry. Acta Physica Sinica, 2010, 59(3): 1702-1706. doi: 10.7498/aps.59.1702
    [15] Gong Ye, Zhang Jian-Hong, Wang Xiao-Dong, Wu Di, Liu Jin-Yuan, Liu Yue, Wang Xiao-Gang, Ma Teng-Cai. Numerical simulation on the energy deposition of double-layer target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [16] Yang Huan, Gao Kuang, Zhang Sui-Meng. A theoretical study on (e, 2e) process for helium in large energy loss and close to minimum momentum transfer geometry. Acta Physica Sinica, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [17] Yang Hai-Liang, Qiu Ai-Ci, Li Jing-Ya, Sun Jian-Feng, He Xiao-Ping, Tang Jun-Ping, Wang Hai-Yang, Huang Jian-Jun, Ren Shu-Qing, Zou Li-Li, Yang Li. Energy spectra of high-power ion beams measured with a pile of thin films on FLASH Ⅱ. Acta Physica Sinica, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [18] Wang Gui-Qiu, Wang You-Nian. Influence of laser field on interactions between swift molecular ions and solids. Acta Physica Sinica, 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
    [19] WANG YING-GUAN, LUO ZHENG-MING. INFLUENCE OF NONELASTIC NUCLEAR INTERACTION ON THE PROTON BEAM ENERGY DEPOSITION. Acta Physica Sinica, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [20] WANG YOU-NIAN, MA TENG-CAI, GONG YE. ELECTRONIC STOPPING POWER AND EFFECTIVE CHARGE OF HEAVY ION-BEAM IN HOT TARGETS. Acta Physica Sinica, 1993, 42(4): 631-639. doi: 10.7498/aps.42.631
Metrics
  • Abstract views:  6413
  • PDF Downloads:  165
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2017
  • Accepted Date:  11 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回
Baidu
map