-
采用新的具有常数锥角的玻璃锥管,并对玻璃锥管进行了外表面导电屏蔽,通过对电子穿越玻璃锥管的二维角分布随时间演化的观测,研究了低能电子与玻璃管相互作用的机制.发现电子穿越完全放电的玻璃锥管时穿透率先下降后平稳,整个过程中角分布中心发生微小移动,但角分布的半高宽几乎保持不变.这与我们之前发表的工作(2016 Acta Phys.Sin. 65 204103)不同,这是由于对玻璃锥管进行外表面导电屏蔽会阻止外界不确定的快速充放电的影响,并形成了新的稳定放电通道,有利于实现电子的稳定穿透.电子的穿透率随倾角呈类似矩形的分布,透射电子的角分布中心伴随倾角的变化而移动,其穿透所容许的倾角与几何穿透一致.The transmission of 1.5 keV-electrons through a conical glass capillary is reported. This study aims to understand the so-called guiding effect for the negatively charged particles (e.g. electrons). The guiding mechanism is understood quite well with positively charged particles in particular highly charged ions, but not clear with electrons, i.e., even the basic scheme mediated by the existence of negative charge patches to guide the electrons is still somewhat controversial. The study of the charging-up dynamics causing the electrons transport inside the capillary will shed light on this issue. In order to perform this, a data acquisition system has been setup to follow the time evolution of the twodimensional angular distribution of the transmitted electrons. The electrons are detected by the multi-channel plate (MCP) detector with a phosphor screen. The image from the phosphor screen is recorded by a charge-coupled device camera. The timing signals for the detected events are extracted from the back stack of the MCP detector and recorded by the data acquisition system, synchronized with the acquired images. The electron beam has a size of 0.5 mm0.5 mm and a divergence of less than 0.35. The inner diameter of the straight part of the capillary is 1.2 mm and the exit diameter is 225 m. A small conducting aperture of 0.3 mm in diameter is placed at the entrance of the capillary. Two-dimensional angular distribution of the transmitted electrons through conical glass capillary and its time evolution are measured. The results show that the transmission rate decreases and reaches to a constant value for the completely discharged glass capillary with time going by. The centroid of the angular distribution moves to an asymptotic value while the width remains unchanged. These transmission characteristics are different from those indicated in our previous work (2016 Acta Phys. Sin. 65 204103). The difference originates from the different manipulations of the capillary outer surface. A conducting layer is coated on the outer surface of the capillary and grounded in this work. This isolates various discharge/charge channels and forms a new stable discharge channel. The transmission rate as a function of the tilt angle shows that the allowed transmission occurs at the tilt angle limited by the geometrical factors, i.e., the geometrical opening angle given by the aspect ratio as well as the beam divergence. The transmission characteristics suggest that most likely there are formed no negative patches to facilitate the electron transmission through the glass capillary at this selected beam energy. It is different from that of highly charged ions, where the formation of the charge patches prohibits the close collisions between the following ions and guides them out of the capillary.
-
Keywords:
- electron /
- guiding effect /
- glass capillaries
[1] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[2] Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712
[3] Schiessl K, Palfinger W, Tőksi K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902
[4] Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202
[5] Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716
[6] Milosavljević A R, Vkor G, Peić Z D, Kolarž P, ević D, Marinković B P, Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901
[7] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instrum. Meth. Phys. Res. B 317 105
[8] Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, Ikeda T, Tanis J A 2013 Phys. Scr. T156 014057
[9] Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701
[10] Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711
[11] Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoeks R 2009 Phys. Rev. A 79 022901
[12] Sahana M B, Skog P, Vikor G, Rajendra Kumar R T, Schuch R 2006 Phys. Rev. A 73 040901
[13] Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75 042901
[14] Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Meth. Phys. Res. Sect. B 258 145
[15] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, L X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902
[16] Schiessl K, Tőksi K, Solleder B, Lemell C, Burgdőrfer J 2009 Phys. Rev. Lett. 102 163201
[17] Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202
[18] Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]
[19] Wang W, Chen J, Yu D Y, Wu Y H, Zhang M W, Cai X H 2011 High Power Laser and Particle Beams 23 1065 (in Chinese) [王伟, 陈婧, 于得洋, 武晔虹, 张明武, 蔡晓红 2011 强激光与粒子束 23 1065]
[20] Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2010 Acta Phys. Sin. 59 222 (in Chinese) [陈益峰, 陈熙萌, 娄凤君, 徐进章, 邵剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫 2010 59 222]
[21] Lemell C, Burgdőrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237
[22] Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1
[23] ALPHA Collaboration, Andresen G B, Bertsche W, Bowe P D, Bray C C, Butler E, Cesar C L, Chapman S, Charlton M, Fajans J, Fujiwara M C, Gill D R, Hangst J S, Hardy W N, Hayano R S, Hayden M E, Humphries A J, Hydomako R, Jrgensen L V, Kerrigan S, Kurchaninov L, Lambo R, Madsen N, Nolan P, Olchanski K, Olin A, Povilus A P, Pusa P, Sarid E, Seif S, Silveira D M, Storey J W, Thompson R I, Vander D P, Yamazaki Y 2009 Rev. Sci. Instrum. 80 123701
[24] Varialee V 2015 Phys. Procedia 66 242
[25] Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103 (in Chinese) [万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103]
-
[1] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[2] Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712
[3] Schiessl K, Palfinger W, Tőksi K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902
[4] Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202
[5] Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716
[6] Milosavljević A R, Vkor G, Peić Z D, Kolarž P, ević D, Marinković B P, Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901
[7] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instrum. Meth. Phys. Res. B 317 105
[8] Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, Ikeda T, Tanis J A 2013 Phys. Scr. T156 014057
[9] Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701
[10] Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711
[11] Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoeks R 2009 Phys. Rev. A 79 022901
[12] Sahana M B, Skog P, Vikor G, Rajendra Kumar R T, Schuch R 2006 Phys. Rev. A 73 040901
[13] Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75 042901
[14] Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Meth. Phys. Res. Sect. B 258 145
[15] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, L X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902
[16] Schiessl K, Tőksi K, Solleder B, Lemell C, Burgdőrfer J 2009 Phys. Rev. Lett. 102 163201
[17] Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202
[18] Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]
[19] Wang W, Chen J, Yu D Y, Wu Y H, Zhang M W, Cai X H 2011 High Power Laser and Particle Beams 23 1065 (in Chinese) [王伟, 陈婧, 于得洋, 武晔虹, 张明武, 蔡晓红 2011 强激光与粒子束 23 1065]
[20] Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2010 Acta Phys. Sin. 59 222 (in Chinese) [陈益峰, 陈熙萌, 娄凤君, 徐进章, 邵剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫 2010 59 222]
[21] Lemell C, Burgdőrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237
[22] Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1
[23] ALPHA Collaboration, Andresen G B, Bertsche W, Bowe P D, Bray C C, Butler E, Cesar C L, Chapman S, Charlton M, Fajans J, Fujiwara M C, Gill D R, Hangst J S, Hardy W N, Hayano R S, Hayden M E, Humphries A J, Hydomako R, Jrgensen L V, Kerrigan S, Kurchaninov L, Lambo R, Madsen N, Nolan P, Olchanski K, Olin A, Povilus A P, Pusa P, Sarid E, Seif S, Silveira D M, Storey J W, Thompson R I, Vander D P, Yamazaki Y 2009 Rev. Sci. Instrum. 80 123701
[24] Varialee V 2015 Phys. Procedia 66 242
[25] Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103 (in Chinese) [万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103]
计量
- 文章访问数: 5620
- PDF下载量: 206
- 被引次数: 0