-
As the speed of a hypersonic vehicle increases, atomic emission lines in the shock-layer will be a main source of radiative heating. Therefore, it is very important to study the atomic excitation in the air plasma in the shock layer. For a thermal nonequilibrium air plasma, the equilibrium statistical theory is not applicable. Although full models (such as the collisional-radiative model) can be used to solve nonequilibrium problems with high accuracy, they are too expensive computationally and difficult to apply to engineering. In this work, we investigate the atomic excitation in air plasmas by the bound-state characteristic temperature (BCT) method. Some cases of equilibrium and nonequilibrium air plasmas associated with the well-known FIRE II flight experiment are considered. The calculated atomic energy level populations are in good agreement with those from the CR model, thereby showing that our calculation is reasonable and has a good accuracy. The computational efficiency is more than 2000 times higher than that from the CR model. If it is used in the flow field of a hypersonic vehicle, the computational cost can be greatly reduced.
-
Keywords:
- hypersonic /
- air plasmas /
- nonequilibrium /
- energy level populations /
- radiative heating
[1] Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley Press) pp6–28
[2] Park C 1993 J. Spacecr. Rockets 7 385
[3] Hansen S B, Chung H K, Fontes C J, Ralchenko Y, Scott H A, Stambulchik E 2020 High Energy Density Phys. 35 100693Google Scholar
[4] Piron R, Gilleron F, Aglitskiy Y, Chung H K, Fontes C J, Hansen S B, Marchuk O, Scott H A, Stambulchik E, Ralchenko Y 2017 High Energy Density Phys. 23 38Google Scholar
[5] Shang J S, Surzhikov S T 2011 J. Spacecr. Rockets 48 385Google Scholar
[6] Tauber M E, Palmer G E, Yand L 1992 J. Thermophys. Heat Transf. 6 193Google Scholar
[7] Johnston C O 2006 Ph. D. Dissertation (Blacksburg: Virginia Polytechnic Institute and State University)
[8] 吴泽清 2000 博士学位论文(北京: 中国工程物理研究院)
Wu Z 2000 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)
[9] Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley and Los Angeles: University of California Press) p2
[10] Ralchenko Y 2016 Modern Methods in Collisional-Radiative Modeling of Plasmas (Berlin: Springer International Publishing) p127
[11] Gao C, Jin F, Zeng J, Yuan J 2013 New J. Phys. 15 015022Google Scholar
[12] 高城 2011 博士学位论文(长沙: 国防科技大学)
Gao C 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[13] Surzhikov S T 2012 J. Heat Transf.-Trans. ASME 134 031002Google Scholar
[14] Bansal A, Modest M F, Levin D A 2011 J. Quant. Spectrosc. Radiat. Transf. 112 1213Google Scholar
[15] Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)
[16] Fujita K, Abe T 1997 Institute of Space & Astronautical Science Report 669 1
[17] Dong S K, Ma Y, Tan H P 2008 J. Thermophys. Heat Transf. 22 301Google Scholar
[18] Ozawa T, Modest M F, Levin D A 2010 J. Heat Transf.-Trans. ASME 132 023406Google Scholar
[19] He X, Chang S L, Dai S A, Yang J C 2013 Chin. Phys. Lett. 30 114401Google Scholar
[20] 何新, 江涛, 高城, 张振福, 杨俊波 2021 70 145202Google Scholar
He X, Jiang T, Gao C, Zhang Z F, Yang J B 2021 Acta Phys. Sin. 70 145202Google Scholar
[21] Panesi M, Magin T, Bourdon A, Bultel A, Chazot O 2009 J. Thermophys. Heat Transf. 23 236Google Scholar
[22] He X, Dang W H, Jia H H, Yin H W, Zhang H L, Chang S L, Yang J C 2014 Chin. Phys. Lett. 31 095204Google Scholar
[23] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team https://physics.nist.gov/asd [2021-10-10]
-
表 1 空气等离子体参数
Table 1. Parameters of air plasmas.
Fire II时间点/s 1634 1636 1643 距离激波面/mm 25 10 7 5 5 Te/K 10299 12899 13409 11868 10473 N/(1016 cm–3) 1.81 1.28 1.22 3.75 N+/(1014 cm–3) 24.90 8.05 7.78 50.10 O/(1015 cm–3) 3.42 10.70 35.80 O+/(1014 cm–3) 1.51 8.38 12.10 ne/(1014 cm–3) 29.00 9.68 8.99 67.30 106.00 热力学状态 近平衡 非平衡 非平衡 非平衡 近平衡 -
[1] Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley Press) pp6–28
[2] Park C 1993 J. Spacecr. Rockets 7 385
[3] Hansen S B, Chung H K, Fontes C J, Ralchenko Y, Scott H A, Stambulchik E 2020 High Energy Density Phys. 35 100693Google Scholar
[4] Piron R, Gilleron F, Aglitskiy Y, Chung H K, Fontes C J, Hansen S B, Marchuk O, Scott H A, Stambulchik E, Ralchenko Y 2017 High Energy Density Phys. 23 38Google Scholar
[5] Shang J S, Surzhikov S T 2011 J. Spacecr. Rockets 48 385Google Scholar
[6] Tauber M E, Palmer G E, Yand L 1992 J. Thermophys. Heat Transf. 6 193Google Scholar
[7] Johnston C O 2006 Ph. D. Dissertation (Blacksburg: Virginia Polytechnic Institute and State University)
[8] 吴泽清 2000 博士学位论文(北京: 中国工程物理研究院)
Wu Z 2000 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)
[9] Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley and Los Angeles: University of California Press) p2
[10] Ralchenko Y 2016 Modern Methods in Collisional-Radiative Modeling of Plasmas (Berlin: Springer International Publishing) p127
[11] Gao C, Jin F, Zeng J, Yuan J 2013 New J. Phys. 15 015022Google Scholar
[12] 高城 2011 博士学位论文(长沙: 国防科技大学)
Gao C 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[13] Surzhikov S T 2012 J. Heat Transf.-Trans. ASME 134 031002Google Scholar
[14] Bansal A, Modest M F, Levin D A 2011 J. Quant. Spectrosc. Radiat. Transf. 112 1213Google Scholar
[15] Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)
[16] Fujita K, Abe T 1997 Institute of Space & Astronautical Science Report 669 1
[17] Dong S K, Ma Y, Tan H P 2008 J. Thermophys. Heat Transf. 22 301Google Scholar
[18] Ozawa T, Modest M F, Levin D A 2010 J. Heat Transf.-Trans. ASME 132 023406Google Scholar
[19] He X, Chang S L, Dai S A, Yang J C 2013 Chin. Phys. Lett. 30 114401Google Scholar
[20] 何新, 江涛, 高城, 张振福, 杨俊波 2021 70 145202Google Scholar
He X, Jiang T, Gao C, Zhang Z F, Yang J B 2021 Acta Phys. Sin. 70 145202Google Scholar
[21] Panesi M, Magin T, Bourdon A, Bultel A, Chazot O 2009 J. Thermophys. Heat Transf. 23 236Google Scholar
[22] He X, Dang W H, Jia H H, Yin H W, Zhang H L, Chang S L, Yang J C 2014 Chin. Phys. Lett. 31 095204Google Scholar
[23] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team https://physics.nist.gov/asd [2021-10-10]
Catalog
Metrics
- Abstract views: 3610
- PDF Downloads: 47
- Cited By: 0