Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Assessment of applicability of cold plasma dispersion relation of slot region hiss based on Van Allen Probes observations

Zhu Qi Ma Xin Cao Xing Ni Bin-Bin Xiang Zheng Fu Song Gu Xu-Dong Zhang Yuan-Nong

Citation:

Assessment of applicability of cold plasma dispersion relation of slot region hiss based on Van Allen Probes observations

Zhu Qi, Ma Xin, Cao Xing, Ni Bin-Bin, Xiang Zheng, Fu Song, Gu Xu-Dong, Zhang Yuan-Nong
PDF
HTML
Get Citation
  • Electron scattering caused by plasmapheric hiss is the dominant mechanism that is responsible for the formation of slot region (1.8 ≤ L ≤ 3) between the Earth’s inner and outer radiation belts. The cold plasma dispersion relation of plasmaspheric hiss is widely used to quantify its scattering effect on energetic electrons. However, the existence of hot plasmas in the realistic magnetospheric environment will modify the dispersion properties of plasmaspheric hiss. According to Van Allen Probes observations, we select all hiss events in the slot region and compare the observed hiss wave amplitudes with the converted hiss wave amplitudes deduced from cold plasma dispersion relation and electric field observations, and then study the dependence of the applicability of cold plasma dispersion relation of slot region hiss on spatial position and geomagnetic activity. The results show that the cold plasma approximation tends to overestimate the amplitude of slot region hiss. The difference between the observed amplitude and the converted hiss wave amplitude has a strong day night asymmetry. However, it shows a slight dependence on the level of geomagnetic activities. In addition, we find that the converted wave magnetic field intensity is significantly lower (higher) than the observed magnetic field intensity at lower frequencies (higher frequencies), which indicates that the cold plasma approximation generally overestimates (underestimates) the scattering effects of hiss waves on the lower (higher) energy electrons in the slot region. Our study confirms that the application scope of the cold plasma dispersion relation of slot hiss has strong spatial and frequency limitations, which is of great importance in deepening our understanding of the dynamic evolution of electrons in the slot region.
      Corresponding author: Cao Xing, cxing@whu.edu.cn ; Ni Bin-Bin, bbni@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 41904143, 41904144), the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000), and the China Postdoctoral Science Foundation (Grant Nos. 2020M672405, 2019M662700).
    [1]

    Thorne R M, Smith E J, Burton R. K, Holzer R E 1973 J. Geophys. Res. Space Phys. 78 1581Google Scholar

    [2]

    Thorne R M, Church S R, Gorney D J 1979 J. Geophys. Res. Space Phys. 84 5241Google Scholar

    [3]

    Ni B, Li W, Thorne R M, Bortnik J, Ma Q, Chen L, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2014 Geophys. Res. Lett. 41 1854Google Scholar

    [4]

    Shi R, Li W, Ma Q, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2017 J. Geophys. Res. Space Phys. 122 10263Google Scholar

    [5]

    Su Z, Liu N, Zheng H, Wang Y, Wang S 2018 Geophys. Res. Lett. 45 565Google Scholar

    [6]

    Su Z, Liu N, Zheng H, Wang Y, Wang S 2018 Geophys. Res. Lett. 45 10921Google Scholar

    [7]

    Zhang W, Fu S, Gu X, Ni B, Xiang Z, Summers D, Zou Z, Cao X, Lou Y, Hua M 2018 Geophys. Res. Lett. 45 4618Google Scholar

    [8]

    Zhang W, Ni B, Huang H, Summers D, Fu S, Xiang Z, Gu X, Cao X, Lou Y, Hua M 2019 Geophys. Res. Lett. 46 5670Google Scholar

    [9]

    Smith E J, Frandsen A, Tsurutani B T, Thorne R M, Chan K W 1974 J. Geophys. Res. Space Phys. 79 2507Google Scholar

    [10]

    Meredith N P, Horne R B, Thorne Richard M, Summers D, Anderson R R 2004 J. Geophys. Res. Space Phys. 109 A06209Google Scholar

    [11]

    Santolík O, Parrot M, Storey L, Pickett J S, Gurnett D A 2001 Geophys. Res. Lett. 28 1127Google Scholar

    [12]

    Bortnik J, Thorne R M, Meredith N P 2008 Nature 452 62Google Scholar

    [13]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. Space Phys. 77 3455Google Scholar

    [14]

    Lyons L R, Thorne R M 1973 J. Geophys. Res. Space Phys. 78 2142Google Scholar

    [15]

    Albert J M 1994 J. Geophys. Res. Space Phys. 99 23741Google Scholar

    [16]

    Abel B, Thorne R M 1998a J. Geophys. Res. Space Phys. 103 2385Google Scholar

    [17]

    Abel B, Thorne R M 1998b J. Geophys. Res. Space Phys. 103 2397Google Scholar

    [18]

    Meredith N P, Horne R B, Clilverd M A, Horsfall D, Thorne R M, Anderson R R 2006a J. Geophys. Res. Space Phys. 111 A09217Google Scholar

    [19]

    Meredith N P, Horne R B, Glauert S A, Thorne R M, Summers D, Albert J M, Anderson R R 2006b J. Geophys. Res. Space Phys. 111 A05212Google Scholar

    [20]

    李柳元, 曹晋滨, 周国成 2008 地球 51 316Google Scholar

    Li L Y, Cao J B, Zhou G C 2008 Chin J. Geophys. 51 316Google Scholar

    [21]

    宗秋刚, 王永福, 杨彪, 周煦之, 傅绥燕, 濮祖荫, 谢伦, Fritz T A 2009 中国科学: 技术科学 39 923Google Scholar

    Zong Q G, Wang Y F, Yang B, Zhou X Z, Fu S Y, Pu Z Y, Xie L, Fritz T A 2009 Science China: Earth Sciences 39 923Google Scholar

    [22]

    宗秋刚, 袁憧憬, 王永福, 苏振鹏 2013 中国科学: 地球科学 56 1118Google Scholar

    Zong Q G, Yuan C J, Wang Y F Su Z P 2013 Science China: Earth Sciences. 56 1118Google Scholar

    [23]

    Ma X, Xiang Z, Ni B, Fu S, Cao X, Hua M, Guo D, Guo Y, Gu X, Liu Z, Zhu Q 2020 Earth Planet. Phys. 4 598Google Scholar

    [24]

    Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 1127Google Scholar

    [25]

    王春琴, 张贤国, 沈国红, 张珅毅, 张效信, 黄聪, 李兴冀 2021 地球 64 1831Google Scholar

    Wang C Q, Zhang X G, Shen G H, Zhang K Y, Zhang X X, Huang C, Li X Y 2021 Chin J. Geophys. 64 1831Google Scholar

    [26]

    Summers D, Ni B B, Meredith N P 2007 J. Geophys. Res. Space Phys. 112 A04207Google Scholar

    [27]

    Ni B B, Bortnik J, Thorne R M, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740Google Scholar

    [28]

    Breneman A W, Halford A, Millan R, Mccarthy M, Fennell J, Sample J, Woodger L, Hospodarsky G, Wygant J R, Cattell C A, Goldstein J, Malaspina D, Kletzing C A 2015 Nature 523 193Google Scholar

    [29]

    Ma Q, Li W, Thorne R M, Ni B, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Henderson M G, Spence H E, Baker D N, Blake J B, Fennell J F, Claudepierre S G, Angelopoulos V 2015 Geophys. Res. Lett. 42 987Google Scholar

    [30]

    Cao X, Ni B B, Summers D, Zou Z, Fu S, Zhang W 2017 Geophys. Res. Lett. 44 9547Google Scholar

    [31]

    Fu S, Yi J, Ni B, Zhou R, Hu Z, Cao X, Gu X, Guo D 2020 Geophys. Res. Lett. 47 e2020GL086963Google Scholar

    [32]

    Ni B, Huang H, Zhang W, Gu X, Zhao H, Li X, Baker D, Fu S, Xiang Z, Cao X 2019 Geophys. Res. Lett. 46 4134Google Scholar

    [33]

    Zhao H, Ni B, Li X, Baker D N, Johnston W R, Zhang W, Xiang Z, Gu X, Jaynes A N, Kanekal S G, Blake J B, Claudepierre S G, Temerin M A, Funsten H O, Reeves G D, Boyd A J 2019 Nat. Phys. 15 367Google Scholar

    [34]

    Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056Google Scholar

    [35]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377Google Scholar

    [36]

    Xiao F L, Su Z, Zheng H. Wang S 2009a J. Geophys. Res. Space Phys. 114 A03201Google Scholar

    [37]

    Xiao F L, Zong Q G, Chen L 2009b J. Geophys. Res. Space Phys. 114 A01215Google Scholar

    [38]

    Ma Q, Li W, Thorne R M, Nishimura Y, Zhang X J, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Henderson M G, Spence H E, Baker D N, Blake J B, Fennell J F, Angelopoulos V 2016 J. Geophys. Res. Space Phys. 121 4217Google Scholar

    [39]

    Hua M, Li W, Ni B, Ma Q, Reeves G D 2020 Nat. Commun 11Google Scholar

    [40]

    Zhu Q, Cao X, Gu X, N i, B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Phys. 126 A029057Google Scholar

    [41]

    Reeves G D, Fritz T A, Cayton T E, Belian R D 1990 Geophys. Res. Lett. 17 2015Google Scholar

    [42]

    Friedel R H W, Korth A, Kremser G 1996 J. Geophys. Res. Space Phys. 101 A00399Google Scholar

    [43]

    Baker D N, Pulkkinen T I, Hesse M, Mcpherron R L 1997 J. Geophys. Res. Space Phys. 102 A03961Google Scholar

    [44]

    Cao J B, Wei X H, Duan A Y, Fu H S, Zhang T L, Reme H, Dandouras I 2013 J. Geophys. Res. Space Phys. 118 1659Google Scholar

    [45]

    Chen L, Thorne R M, Shprits Y, Ni B 2013 J. Geophys. Res. Space Phys. 118 2185Google Scholar

    [46]

    Turner D L, Claudepierre S G, Fennell J F, O'Brien T P, Blake J B, Lemon C, Gkioulidou M, Takahashi K, Reeves G D, Thaller S, Breneman A, Wygant J R, Li W, Runov A, Angelopoulos V 2015 Geophys. Res. Lett. 42 2079Google Scholar

    [47]

    Cao X, Shprits Y, Ni B, Zhelavskaya I S 2017 Sci. Rep. 7 17719Google Scholar

    [48]

    Ni B, Cao X, Shprits Y Y, Summers D, Gu X, Fu S, Lou Y 2018 Geophys. Res. Lett. 45 21Google Scholar

    [49]

    Yu J, Li L Y, Cui J, Cao J B, Wang J 2019 Geophys. Res. Lett. 46 6306Google Scholar

    [50]

    Yu J, Li L Y, Cui J, Cao J B, Wang J, He Z, Yang J 2020 J. Geophys. Res. Space Phys. 125Google Scholar

    [51]

    Hartley D P, Kletzing C A, Kurth W S, Bounds S R, Averkamp T F, Hospodarsky G B, Wygant J R, Bonnell J W, Santolík O, Watt C E J 2016 J. Geophys. Res. Space Phys. 121 4590Google Scholar

    [52]

    Cao X, Ni B, Summers D, Fu S, Gu X, Shi R 2020 Astrophys. J. 896 118Google Scholar

    [53]

    Ma X, Cao X, Ni B, Zhu Q, Xiang Z 2021 Astrophys. J. 916Google Scholar

    [54]

    Selesnick R S, Blake J B, Mewaldt R A 2003 J. Geophys. Res. Space Phys. 108 1468Google Scholar

    [55]

    Kim K C, Shprits Y, Subbotin D, Ni B 2011 J. Geophys. Res. Space Phys. 116 A10214Google Scholar

    [56]

    Meredith N P, Horne R B, Glauert S A, Anderson R R 2007 J. Geophys. Res. Space Phys. 112 8214Google Scholar

    [57]

    Stix T H 1992 Waves in Plasmas (America Institute Physics)

    [58]

    Li W, Ma Q, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 5

    [59]

    顾旭东, 殷倩, 倪彬彬, 项正, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 谈家强, 王豪, 郑程耀, 贺丰明 2017 地球 60 1249Google Scholar

    Gu X D, Yin Q, Ni B B, Xiang Z, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, Tan J Q, Wang H, Zhen C Y, He F M 2017 Chin. J. Geophys. 60 1249Google Scholar

    [60]

    项正, 谭家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪 2017 66 039401Google Scholar

    Xiang Z, Tan J Q, Ni B B, Gu X D, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, He F M, Zhen C Y, Yin Q, Wang H 2017 Acta Phys. Sin 66 039401Google Scholar

    [61]

    Kurth W S, Pascuale S D, Faden J B, Kletzing C A, Hospodarsky G B, Thaller S, Wygant J R 2015 J. Geophys. Res. Space Phys. 120 904Google Scholar

    [62]

    Hartley D P, Chen Y, Kletzing C A, Denton M H, Kurth W S 2015 J. Geophys. Res. Space Phys. 120 1144Google Scholar

    [63]

    Hartley D P, Kletzing C A, Kurth W S, Hospodarsky G B, Bounds S R, Averkamp T F, Bonnell J W, Santolík O, Wygant J R 2017 J. Geophys. Res. Space Phys. 122 4420Google Scholar

  • 图 1  2015年5月23日范阿伦B观测到的嘶声波事件 (a)背景电子密度; (b) AE和Dst指数; (c)观测电场功率谱密度; (d)观测磁场功率谱密度; (e) 基于冷等离子理论的反演磁场功率谱密度; (f)传播角; (g)极化率; (h)平面度; (i)嘶声波观测(红色)和反演(蓝色)幅值. 图(c)—(e)中的品红线条对应下混杂频率fLHR

    Figure 1.  Overview of a plasmaspheric hiss event observed by Van Allen Probe B on 23 May 2015: (a) Ambient electron density; (b) AE index and SYM_H index; observed power spectral intensity of (c) electric field and (d) magnetic field; (e) converted power spectral intensity of magnetic field based on the cold plasma dispersion relation; (f) wave normal angle; (g) wave ellipticity; (h) wave planarity; (i) observed (red) and converted (blue) hiss wave amplitudes. The magenta lines in panels (c)–(e) correspond to the lower hybrid resonance frequency fLHR.

    图 2  嘶声波观测幅值与反演幅值比值(${\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$)的(a)均值与(b)方差随L和MLT的全球二维统计分布; (c)—(f)比值的均值与方差在不同MLT区间随L-shell的一维统计分布; (g)—(j)在不同L-shell区间随MLT的一维统计分布

    Figure 2.  Global distribution of the (a) mean value and (b) variance of the ratio of observed hiss amplitudes and converted amplitudes (${\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$) as a function of L-shell and MLT; (c)–(f) the mean value and variance of the ratio as a function of L-shell in different MLT sectors; (g)–(j) the mean value and variance of the ratio as a function of MLT in different L-shell ranges.

    图 3  不同地磁活动水平下, 嘶声波观测幅值与反演幅值比值(${\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$)的均值和方差随L和MLT的全球统计分布(a)—(c)均值; (d)—(f)方差

    Figure 3.  From left to right, global distribution of the mean value and variance of the ratio of observed hiss amplitudes and converted amplitudes (${\rm{log}}_{10}\left( {{B}_{\rm obs}}/{{B}_{\rm cvt}}\right)$) as a function of L-shell and MLT, in different geomagnetic conditions: (a)–(c) mean value; (d)–(f) variance of the ratio.

    图 4  嘶声波观测的磁场功率谱密度与反演的磁场功率谱密度比值(${\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$)的均值(蓝线)和方差(红线)随波动频率的变化

    Figure 4.  Mean value (blue) and variance (red) of the ratio of observed and converted power spectral intensity $( {\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$) as a function of wave frequency.

    Baidu
  • [1]

    Thorne R M, Smith E J, Burton R. K, Holzer R E 1973 J. Geophys. Res. Space Phys. 78 1581Google Scholar

    [2]

    Thorne R M, Church S R, Gorney D J 1979 J. Geophys. Res. Space Phys. 84 5241Google Scholar

    [3]

    Ni B, Li W, Thorne R M, Bortnik J, Ma Q, Chen L, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2014 Geophys. Res. Lett. 41 1854Google Scholar

    [4]

    Shi R, Li W, Ma Q, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2017 J. Geophys. Res. Space Phys. 122 10263Google Scholar

    [5]

    Su Z, Liu N, Zheng H, Wang Y, Wang S 2018 Geophys. Res. Lett. 45 565Google Scholar

    [6]

    Su Z, Liu N, Zheng H, Wang Y, Wang S 2018 Geophys. Res. Lett. 45 10921Google Scholar

    [7]

    Zhang W, Fu S, Gu X, Ni B, Xiang Z, Summers D, Zou Z, Cao X, Lou Y, Hua M 2018 Geophys. Res. Lett. 45 4618Google Scholar

    [8]

    Zhang W, Ni B, Huang H, Summers D, Fu S, Xiang Z, Gu X, Cao X, Lou Y, Hua M 2019 Geophys. Res. Lett. 46 5670Google Scholar

    [9]

    Smith E J, Frandsen A, Tsurutani B T, Thorne R M, Chan K W 1974 J. Geophys. Res. Space Phys. 79 2507Google Scholar

    [10]

    Meredith N P, Horne R B, Thorne Richard M, Summers D, Anderson R R 2004 J. Geophys. Res. Space Phys. 109 A06209Google Scholar

    [11]

    Santolík O, Parrot M, Storey L, Pickett J S, Gurnett D A 2001 Geophys. Res. Lett. 28 1127Google Scholar

    [12]

    Bortnik J, Thorne R M, Meredith N P 2008 Nature 452 62Google Scholar

    [13]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. Space Phys. 77 3455Google Scholar

    [14]

    Lyons L R, Thorne R M 1973 J. Geophys. Res. Space Phys. 78 2142Google Scholar

    [15]

    Albert J M 1994 J. Geophys. Res. Space Phys. 99 23741Google Scholar

    [16]

    Abel B, Thorne R M 1998a J. Geophys. Res. Space Phys. 103 2385Google Scholar

    [17]

    Abel B, Thorne R M 1998b J. Geophys. Res. Space Phys. 103 2397Google Scholar

    [18]

    Meredith N P, Horne R B, Clilverd M A, Horsfall D, Thorne R M, Anderson R R 2006a J. Geophys. Res. Space Phys. 111 A09217Google Scholar

    [19]

    Meredith N P, Horne R B, Glauert S A, Thorne R M, Summers D, Albert J M, Anderson R R 2006b J. Geophys. Res. Space Phys. 111 A05212Google Scholar

    [20]

    李柳元, 曹晋滨, 周国成 2008 地球 51 316Google Scholar

    Li L Y, Cao J B, Zhou G C 2008 Chin J. Geophys. 51 316Google Scholar

    [21]

    宗秋刚, 王永福, 杨彪, 周煦之, 傅绥燕, 濮祖荫, 谢伦, Fritz T A 2009 中国科学: 技术科学 39 923Google Scholar

    Zong Q G, Wang Y F, Yang B, Zhou X Z, Fu S Y, Pu Z Y, Xie L, Fritz T A 2009 Science China: Earth Sciences 39 923Google Scholar

    [22]

    宗秋刚, 袁憧憬, 王永福, 苏振鹏 2013 中国科学: 地球科学 56 1118Google Scholar

    Zong Q G, Yuan C J, Wang Y F Su Z P 2013 Science China: Earth Sciences. 56 1118Google Scholar

    [23]

    Ma X, Xiang Z, Ni B, Fu S, Cao X, Hua M, Guo D, Guo Y, Gu X, Liu Z, Zhu Q 2020 Earth Planet. Phys. 4 598Google Scholar

    [24]

    Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 1127Google Scholar

    [25]

    王春琴, 张贤国, 沈国红, 张珅毅, 张效信, 黄聪, 李兴冀 2021 地球 64 1831Google Scholar

    Wang C Q, Zhang X G, Shen G H, Zhang K Y, Zhang X X, Huang C, Li X Y 2021 Chin J. Geophys. 64 1831Google Scholar

    [26]

    Summers D, Ni B B, Meredith N P 2007 J. Geophys. Res. Space Phys. 112 A04207Google Scholar

    [27]

    Ni B B, Bortnik J, Thorne R M, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740Google Scholar

    [28]

    Breneman A W, Halford A, Millan R, Mccarthy M, Fennell J, Sample J, Woodger L, Hospodarsky G, Wygant J R, Cattell C A, Goldstein J, Malaspina D, Kletzing C A 2015 Nature 523 193Google Scholar

    [29]

    Ma Q, Li W, Thorne R M, Ni B, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Henderson M G, Spence H E, Baker D N, Blake J B, Fennell J F, Claudepierre S G, Angelopoulos V 2015 Geophys. Res. Lett. 42 987Google Scholar

    [30]

    Cao X, Ni B B, Summers D, Zou Z, Fu S, Zhang W 2017 Geophys. Res. Lett. 44 9547Google Scholar

    [31]

    Fu S, Yi J, Ni B, Zhou R, Hu Z, Cao X, Gu X, Guo D 2020 Geophys. Res. Lett. 47 e2020GL086963Google Scholar

    [32]

    Ni B, Huang H, Zhang W, Gu X, Zhao H, Li X, Baker D, Fu S, Xiang Z, Cao X 2019 Geophys. Res. Lett. 46 4134Google Scholar

    [33]

    Zhao H, Ni B, Li X, Baker D N, Johnston W R, Zhang W, Xiang Z, Gu X, Jaynes A N, Kanekal S G, Blake J B, Claudepierre S G, Temerin M A, Funsten H O, Reeves G D, Boyd A J 2019 Nat. Phys. 15 367Google Scholar

    [34]

    Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056Google Scholar

    [35]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377Google Scholar

    [36]

    Xiao F L, Su Z, Zheng H. Wang S 2009a J. Geophys. Res. Space Phys. 114 A03201Google Scholar

    [37]

    Xiao F L, Zong Q G, Chen L 2009b J. Geophys. Res. Space Phys. 114 A01215Google Scholar

    [38]

    Ma Q, Li W, Thorne R M, Nishimura Y, Zhang X J, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Henderson M G, Spence H E, Baker D N, Blake J B, Fennell J F, Angelopoulos V 2016 J. Geophys. Res. Space Phys. 121 4217Google Scholar

    [39]

    Hua M, Li W, Ni B, Ma Q, Reeves G D 2020 Nat. Commun 11Google Scholar

    [40]

    Zhu Q, Cao X, Gu X, N i, B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Phys. 126 A029057Google Scholar

    [41]

    Reeves G D, Fritz T A, Cayton T E, Belian R D 1990 Geophys. Res. Lett. 17 2015Google Scholar

    [42]

    Friedel R H W, Korth A, Kremser G 1996 J. Geophys. Res. Space Phys. 101 A00399Google Scholar

    [43]

    Baker D N, Pulkkinen T I, Hesse M, Mcpherron R L 1997 J. Geophys. Res. Space Phys. 102 A03961Google Scholar

    [44]

    Cao J B, Wei X H, Duan A Y, Fu H S, Zhang T L, Reme H, Dandouras I 2013 J. Geophys. Res. Space Phys. 118 1659Google Scholar

    [45]

    Chen L, Thorne R M, Shprits Y, Ni B 2013 J. Geophys. Res. Space Phys. 118 2185Google Scholar

    [46]

    Turner D L, Claudepierre S G, Fennell J F, O'Brien T P, Blake J B, Lemon C, Gkioulidou M, Takahashi K, Reeves G D, Thaller S, Breneman A, Wygant J R, Li W, Runov A, Angelopoulos V 2015 Geophys. Res. Lett. 42 2079Google Scholar

    [47]

    Cao X, Shprits Y, Ni B, Zhelavskaya I S 2017 Sci. Rep. 7 17719Google Scholar

    [48]

    Ni B, Cao X, Shprits Y Y, Summers D, Gu X, Fu S, Lou Y 2018 Geophys. Res. Lett. 45 21Google Scholar

    [49]

    Yu J, Li L Y, Cui J, Cao J B, Wang J 2019 Geophys. Res. Lett. 46 6306Google Scholar

    [50]

    Yu J, Li L Y, Cui J, Cao J B, Wang J, He Z, Yang J 2020 J. Geophys. Res. Space Phys. 125Google Scholar

    [51]

    Hartley D P, Kletzing C A, Kurth W S, Bounds S R, Averkamp T F, Hospodarsky G B, Wygant J R, Bonnell J W, Santolík O, Watt C E J 2016 J. Geophys. Res. Space Phys. 121 4590Google Scholar

    [52]

    Cao X, Ni B, Summers D, Fu S, Gu X, Shi R 2020 Astrophys. J. 896 118Google Scholar

    [53]

    Ma X, Cao X, Ni B, Zhu Q, Xiang Z 2021 Astrophys. J. 916Google Scholar

    [54]

    Selesnick R S, Blake J B, Mewaldt R A 2003 J. Geophys. Res. Space Phys. 108 1468Google Scholar

    [55]

    Kim K C, Shprits Y, Subbotin D, Ni B 2011 J. Geophys. Res. Space Phys. 116 A10214Google Scholar

    [56]

    Meredith N P, Horne R B, Glauert S A, Anderson R R 2007 J. Geophys. Res. Space Phys. 112 8214Google Scholar

    [57]

    Stix T H 1992 Waves in Plasmas (America Institute Physics)

    [58]

    Li W, Ma Q, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 5

    [59]

    顾旭东, 殷倩, 倪彬彬, 项正, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 谈家强, 王豪, 郑程耀, 贺丰明 2017 地球 60 1249Google Scholar

    Gu X D, Yin Q, Ni B B, Xiang Z, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, Tan J Q, Wang H, Zhen C Y, He F M 2017 Chin. J. Geophys. 60 1249Google Scholar

    [60]

    项正, 谭家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪 2017 66 039401Google Scholar

    Xiang Z, Tan J Q, Ni B B, Gu X D, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, He F M, Zhen C Y, Yin Q, Wang H 2017 Acta Phys. Sin 66 039401Google Scholar

    [61]

    Kurth W S, Pascuale S D, Faden J B, Kletzing C A, Hospodarsky G B, Thaller S, Wygant J R 2015 J. Geophys. Res. Space Phys. 120 904Google Scholar

    [62]

    Hartley D P, Chen Y, Kletzing C A, Denton M H, Kurth W S 2015 J. Geophys. Res. Space Phys. 120 1144Google Scholar

    [63]

    Hartley D P, Kletzing C A, Kurth W S, Hospodarsky G B, Bounds S R, Averkamp T F, Bonnell J W, Santolík O, Wygant J R 2017 J. Geophys. Res. Space Phys. 122 4420Google Scholar

  • [1] Wang Guo-Dong, Cheng Rui, Wang Zhao, Zhou Ze-Xian, Luo Xia-Hui, Shi Lu-Lin, Chen Yan-Hong, Lei Yu, Wang Yu-Yu, Yang Jie. Target polarization effect on energy loss of O5+ ions near Bohr velocity in low density hydrogen plasma. Acta Physica Sinica, 2023, 72(4): 043401. doi: 10.7498/aps.72.20221875
    [2] Lin Mai-Mai, Jiang Lei, Song Qiu-Ying, Fu Ying-Jie, Wang Ming-Yue, Wen Hui-Shan, Yu Teng-Xuan. (3 + 1) dimensional nonlinear ion acoustic waves in multicomponent plasma containing Kappa distributed electrons. Acta Physica Sinica, 2022, 71(17): 175201. doi: 10.7498/aps.71.20212255
    [3] Wang Jing-Zhi, Ma Xin, Xiang Zheng, Gu Xu-Dong, Jiao Lu-Huai, Lei Liang-Jian, Ni Bin-Bin. Multi-dimensional modeling of radiation belt electron pitch-angle diffusion coefficients caused by plasmaspheric hiss. Acta Physica Sinica, 2022, 71(22): 229401. doi: 10.7498/aps.71.20220655
    [4] Assessment of the applicability of the cold plasma dispersion relation of slot region hiss based on Van Allen Probes observations. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211671
    [5] Zhang Kai, Du Chun-Guang, Gao Jian-Cun. Long-range surface plasmon polariton enhancement in double-electrode structure. Acta Physica Sinica, 2017, 66(22): 227302. doi: 10.7498/aps.66.227302
    [6] Xiang Zheng, Tan Jia-Qiang, Ni Bin-Bin, Gu Xu-Dong, Cao Xing, Zou Zheng-Yang, Zhou Chen, Fu Song, Shi Run, Zhao Zheng-Yu, He Feng-Ming, Zheng Cheng-Yao, Yin Qian, Wang Hao. A statistical analysis of the global distribution of plasmaspheric hiss based on Van Allen Probes wave observations. Acta Physica Sinica, 2017, 66(3): 039401. doi: 10.7498/aps.66.039401
    [7] Liu San-Qiu, Guo Hong-Mei. Transverse dispersion laws in ultra-relativistic plasma with fast electron distribution. Acta Physica Sinica, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [8] Liu Bing-Can, Lu Zhi-Xin, Yu Li. The dispersion relation for surface plasmon at a metal-Kerr nonlinear medium interface. Acta Physica Sinica, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [9] Li Gang, Li Yi-Ming, Xu Yan-Ji, Zhang Yi, Li Han-Ming, Nie Chao-Qun, Zhu Jun-Qiang. Experimental study of near wall region flow control by dielectric barrier discharge plasma. Acta Physica Sinica, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [10] Ji Pei-Yong, Lu Nan, Zhu Jun. Dispersion relation and Landau damping of linear waves in quantum plasma. Acta Physica Sinica, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [11] Zhu Xi-Rui, Meng Xu-Jun, Tian Ming-Feng. Theoretical study of electronic eqution of state for plasmas with transitional region. Acta Physica Sinica, 2008, 57(7): 4049-4058. doi: 10.7498/aps.57.4049
    [12] Yu Lu-Le, Sheng Zheng-Ming, Zhang Jie. Investigation on the dispersion characteristics of a uniform plasma grating. Acta Physica Sinica, 2008, 57(10): 6457-6464. doi: 10.7498/aps.57.6457
    [13] Yu Quan-Zhi, Li Yu-Tong, Jiang Xiao-Hua, Liu Yong-Gang, Wang Zhe-Bin, Dong Quan-Li, Liu Feng, Zhang Zhe, Huang Li-Zhen, C. Danson, D. Pepler, Ding Yong-Kun, Fu Shi-Nian, Zhang Jie. Infulence of electron temperature on the two peaks of Thomson scattering ion-acoustic waves in laser plasmas. Acta Physica Sinica, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [14] Zhao Guo-Wei, Xu Yue-Min, Chen Cheng. Calculation of dispersion relation and radiation pattern of plasma antenna. Acta Physica Sinica, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [15] LI YI. THE WAKE FIELD ACCELERATION IN THERMAL PLASMA. Acta Physica Sinica, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [16] WU JUN-LING. THE RELATIVISTIC ELECTRON CYCLOTRON WAVE DISPERSION RELATION IN PLASMA. Acta Physica Sinica, 1993, 42(5): 775-784. doi: 10.7498/aps.42.775
    [17] DAI WEN-LONG, HE XIAN-TU, HUO YU-PING, LIU ZHI-JING. SOLITON BEHAVIOR IN THE COUPLED SYSTEM OF LANGMUIR WAVES AND TRANSVERSE WAVES. Acta Physica Sinica, 1987, 36(1): 67-73. doi: 10.7498/aps.36.67
    [18] GUO SHI-CHONG, CAI SHI-DONG. DISPERSION RELATION OF GENERAL MAGNETICALLY CONFINED WEAK RELATIVISTIC PLASMAS. Acta Physica Sinica, 1987, 36(7): 870-880. doi: 10.7498/aps.36.870
    [19] LU QUAN-KANG. DISPERSION RELATIONS OF COLLISIONLESS PLASMA WAVE GUIDE. Acta Physica Sinica, 1977, 26(1): 64-71. doi: 10.7498/aps.26.64
    [20] . Acta Physica Sinica, 1966, 22(7): 844-848. doi: 10.7498/aps.22.844
Metrics
  • Abstract views:  4425
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2021
  • Accepted Date:  11 October 2021
  • Available Online:  27 February 2022
  • Published Online:  05 March 2022

/

返回文章
返回
Baidu
map