搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极化效应对Bohr速度能区O5+离子在低密度氢等离子体中的能损影响

王国东 程锐 王昭 周泽贤 骆夏辉 史路林 陈燕红 雷瑜 王瑜玉 杨杰

引用本文:
Citation:

极化效应对Bohr速度能区O5+离子在低密度氢等离子体中的能损影响

王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰

Target polarization effect on energy loss of O5+ ions near Bohr velocity in low density hydrogen plasma

Wang Guo-Dong, Cheng Rui, Wang Zhao, Zhou Ze-Xian, Luo Xia-Hui, Shi Lu-Lin, Chen Yan-Hong, Lei Yu, Wang Yu-Yu, Yang Jie
PDF
HTML
导出引用
  • 基于HIRFL加速器装置的低能束实验平台, 实验测量了1.07 MeV(~66.9 keV/u)高电荷态O5+离子穿过中性氢气和部分电离的低密度氢等离子体靶后的能量损失, 观测到等离子体中离子能损减小的新实验现象. 分别考虑部分电离等离子体对炮弹离子的电荷屏蔽效应以及靶区原子的极化效应(Barkas修正), 重新计算了离子能损, 讨论了离子能损减小的可能物理机制. 研究结果表明: 在部分电离的低密度等离子体中, 靶区的原子极化效应将显著影响Bohr速度能区离子的能量损失过程.
    Energy loss of ions near the Bohr velocity in plasma is one of the important topics in intense heavy ion beam driven high energy density physics and inertial confinement fusion. Based on the ions-plasma interaction experimental platform at HIRFL, this work shows the new experimental energy loss results of 1.07 MeV (~66.9 keV/u) O5+ ions penetrating through a low-density partially ionized hydrogen plasma target (radio frequency plasma). The decrease of energy loss with free electron density increasing is found, which is very different from our previous result. The new experimental results are discussed by considering the theoretical models which involves the charge screening of projectiles in the partially ionized plasma and the target polarization effect-Barkas correction term. For the charge screening , the comparison between the momentum transfer under the Coulomb potential and that under the Debye potential is given, but due to the low ionization degree, the plasma screening effect seems not to be the main reason for the decrease of energy loss. For the target polarization effect , in the Bohr velocity regime, the Barkas correction term can play a key role in the ion-atom collisions. Modeling the Barkas correction term based on the proposed classical energy loss formula, the experimental data of ions in the gas target can be well fitted by the calculated values. In the partially ionized plasma, the frequent thermal electron collisions can give rise to the atomic excitation of plasma target, correspondingly the Barkas correction term changes: it decreases with the fraction of excited atoms increasing. As a result, the energy loss decreases in our experiment. In the stopping of highly charged ions in a partially ionized low-density plasma, the collisions between ions and free electrons can produce an enhanced energy loss according to previous studies. However, the target polarization effect, especially the atomic excitations, can significantly reduce the energy loss, which is observed in our experiment. Therefore, the interaction between ions and partially ionized plasma should be further studied, and the Barkas correction can be a very important term.
      通信作者: 程锐, chengrui@impcas.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U1532263, 11505248, 11375034, 11875096)资助的课题
      Corresponding author: Cheng Rui, chengrui@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1532263, 11505248, 11375034, 11875096).
    [1]

    Bohr N 1913 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25 10Google Scholar

    [2]

    Deutsch C, Maynard G, Chabot M, Gardes D, della-negra S, Bimbot R, Rivet M-F, Fleurier C, Couillaud C, Hoffmann D, Wahl H, Weyrich K, Rosmej O N, Tahir N, Jacoby J, Ogawa M, Oguri Y, Hasegawa J, Sharkov B, Mintsev V 2010 Plasma Phys. J. 3 88

    [3]

    Zhao Y T, Hu Z H, Cheng R, Wang Y Y, Peng H B, Golubev A, Zhang X A, Lu X, Zhang D C, Zhou X M, Wang X, Xu G, Ren J R, Li Y F, Lei Y, Sun Y B, Zhao J T, Wang T S, Wang Y N, Xiao G Q 2012 Laser Part. Beams 30 679Google Scholar

    [4]

    Khuyagbaatar J, Shevelko V P, Borschevsky A, Düllmann C E, Tolstikhina I Y, Yakushev A 2013 Phys. Rev. A 88 042703Google Scholar

    [5]

    Betz H-D 1972 Rev. Mod. Phys. 44 465Google Scholar

    [6]

    Peter T, Arnold R, Meyer-ter-Vehn J 1986 Phys. Rev. Lett. 57 1859Google Scholar

    [7]

    Cheng R, Zhou X, Wang Y, Lei Y, Chen Y, Ma X, Xiao G, Zhao Y, Ren J, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar

    [8]

    Young F C, Mosher D, Stephanakis S J, Goldstein S A, Mehlhorn T A 1982 Phys. Rev. Lett. 49 549Google Scholar

    [9]

    Redmer R 1997 Phys. Rep. 282 35Google Scholar

    [10]

    Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar

    [11]

    Thorsen J 1987 Niels Bohr Collected Works (Copenhagen: Elsevier Press) pp403-408

    [12]

    Barkas W H, Dyer J N, Heckman H H 1963 Phys. Rev. Lett. 11 26Google Scholar

    [13]

    Sigmund P, Schinner A 2014 Eur. Phys. J. D 68 318Google Scholar

    [14]

    Adamo A, Agnello M, Balestra F, Belli G, Bendiscioli G, Bertin A, Boccaccio P, Bonazzola G C, Bressani T, Bruschi M, Bussa M P, Busso L, Calvo D, Capponi M, Cicalò C, Corradini M, Costa S, D’Antone I, De Castro S, D’Isep F, Donzella A, Falomkin I V, Fava L, Feliciello A, Ferrero L, Filippini V, Galli D, Garfagnini R, Gastaldi U, Gianotti P, Grasso A, Guaraldo C, Iazzi F, Lanaro A, Lodi Rizzini E, Lombardi M, Lucherini V, Maggiora A, Marcello S, Marconi U, Maron G, Masoni A, Massa I, Minetti B, Morando M, Montagna P, Nichitiu F, Panzieri D, Pauli G, Piccinini M, Piragino G, Poli M, Pontecorvo G B, Puddu G, Ricci R A, Rossetto E, Rotondi A, Rozhdestvensky A M, Salvini P, Santi L, Sapozhnikov M G, Semprini Cesari N, Serci S, Temnikov P, Tessaro S, Tosello F, Tretyak V I, Usai G L, Vannucci L, Vedovato G, Venturelli L, Villa M, Vitale A, Zavattini G, Zenoni A, Zoccoli A, Zosi G 1993 Phys. Rev. A 47 4517Google Scholar

    [15]

    Schiwietz G, Wille U, Muiño R D, Fainstein P D, Grande P L 1996 J. Phys. B At. Mol. Opt. Phys. 29 307Google Scholar

    [16]

    Porter L E 2004 Advances in Quantum Chemistry (Pullman: Academic Press) pp91–119

    [17]

    Pandey M K, Lin Y C, Ho Y K 2012 Phys. Plasmas 19 062104Google Scholar

    [18]

    Bimbot R, Geissel H, Paul H, Schinner A, Sigmund P, Wambersie A, Deluca P, Seltzer S M 2005 J. ICRU 5 44Google Scholar

    [19]

    Lindhard J 1976 Nucl. Instrum. Methods Phys. Res. Sect. B 132 1Google Scholar

    [20]

    Makarov D N, Matveev V I 2015 J. Exp. Theor. Phys. 120 772Google Scholar

    [21]

    Griffin D C 1989 Phys. Scr. T28 17Google Scholar

    [22]

    Purkait M, Dhara A, Sounda S, Mandal C R 2001 J. Phys. B At. Mol. Opt. Phys. 34 755Google Scholar

    [23]

    Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar

    [24]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [25]

    Schiwietz G, Grande P L 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 175–177 125Google Scholar

    [26]

    Matveev V I, Makarov D N 2011 JETP Lett. 94 1Google Scholar

    [27]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press) pp17–48

  • 图 1  中科院近物所的离子束与等离子体相互作用实验装置示意图

    Fig. 1.  Schematic drawing of the ion-plasma interaction setups at IMPCAS.

    图 2  射频等离子体的(a)电子密度和(b)电子温度随馈入功率的变化

    Fig. 2.  The change of (a) electron density and (b) electron temperature with input power in RF plasma.

    图 3  80 Pa气压下, 实验测量到出射O1+离子位置随着馈入功率的增加而变化, 原始实验结果(a)经过转化后得到出射O1+离子能谱(b)

    Fig. 3.  At 80 Pa pressure, the position of the outgoing O1+ ion was measured to change with the increase of the input power, the original experimental results (a) were converted to obtain the outgoing O1+ ion energy spectrum (b).

    图 4  不同气压条件下, 离子能损随馈入功率的相对变化, 其中以离子在中性气体靶(馈入功率0 W)中的能损为归一化条件

    Fig. 4.  Under different pressure, the relative change of ion energy loss with the input power, in which the ion energy loss in the neutral gas target (input power=0 W) is the normalization condition.

    图 5  碰撞参数$ b=2{r}_{0} $${{\Delta P}_{{\rm{D}}{\rm{e}}{\rm{b}}{\rm{y}}{\rm{e}}}}/{{\Delta P}_{{\rm{C}}{\rm{o}}{\rm{u}}{\rm{l}}{\rm{o}}{\rm{m}}{\rm{b}}}}$随着Debye长度的变化趋势

    Fig. 5.  ${{\Delta P}_{{\rm{D}}{\rm{e}}{\rm{b}}{\rm{y}}{\rm{e}}}}/{{\Delta P}_{{\rm{C}}{\rm{o}}{\rm{u}}{\rm{l}}{\rm{o}}{\rm{m}}{\rm{b}}}}$ as a function of Debye length at the collision parameter $ b=2{r}_{0} $.

    图 6  中性气体靶中, 未考虑Barkas修正(红虚线)和考虑Barkas修正后(黑虚线)的离子能损计算结果与实验结果的比较

    Fig. 6.  In a neutral gas target, the calculation results of ion energy loss without Barkas correction (red dashed line) and with Barkas correction (black dashed line) are compared with the experimental results.

    图 7  不同功率下, (a)$ {H}_{\alpha } $相对光强随馈入功率的变化; (b)对应的n = 3激发态原子相对数密度随馈入功率的升高而增大

    Fig. 7.  Under different power, (a) change of $ {H}_{\alpha } $ relative light intensity with input power; (b) relative number density of excited atom n = 3 increases with the increase of input power

    图 8  相对能损的实验测量值与计算值对比

    Fig. 8.  Comparison of experimental measured and calculated values of relative energy loss.

    Baidu
  • [1]

    Bohr N 1913 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25 10Google Scholar

    [2]

    Deutsch C, Maynard G, Chabot M, Gardes D, della-negra S, Bimbot R, Rivet M-F, Fleurier C, Couillaud C, Hoffmann D, Wahl H, Weyrich K, Rosmej O N, Tahir N, Jacoby J, Ogawa M, Oguri Y, Hasegawa J, Sharkov B, Mintsev V 2010 Plasma Phys. J. 3 88

    [3]

    Zhao Y T, Hu Z H, Cheng R, Wang Y Y, Peng H B, Golubev A, Zhang X A, Lu X, Zhang D C, Zhou X M, Wang X, Xu G, Ren J R, Li Y F, Lei Y, Sun Y B, Zhao J T, Wang T S, Wang Y N, Xiao G Q 2012 Laser Part. Beams 30 679Google Scholar

    [4]

    Khuyagbaatar J, Shevelko V P, Borschevsky A, Düllmann C E, Tolstikhina I Y, Yakushev A 2013 Phys. Rev. A 88 042703Google Scholar

    [5]

    Betz H-D 1972 Rev. Mod. Phys. 44 465Google Scholar

    [6]

    Peter T, Arnold R, Meyer-ter-Vehn J 1986 Phys. Rev. Lett. 57 1859Google Scholar

    [7]

    Cheng R, Zhou X, Wang Y, Lei Y, Chen Y, Ma X, Xiao G, Zhao Y, Ren J, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar

    [8]

    Young F C, Mosher D, Stephanakis S J, Goldstein S A, Mehlhorn T A 1982 Phys. Rev. Lett. 49 549Google Scholar

    [9]

    Redmer R 1997 Phys. Rep. 282 35Google Scholar

    [10]

    Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar

    [11]

    Thorsen J 1987 Niels Bohr Collected Works (Copenhagen: Elsevier Press) pp403-408

    [12]

    Barkas W H, Dyer J N, Heckman H H 1963 Phys. Rev. Lett. 11 26Google Scholar

    [13]

    Sigmund P, Schinner A 2014 Eur. Phys. J. D 68 318Google Scholar

    [14]

    Adamo A, Agnello M, Balestra F, Belli G, Bendiscioli G, Bertin A, Boccaccio P, Bonazzola G C, Bressani T, Bruschi M, Bussa M P, Busso L, Calvo D, Capponi M, Cicalò C, Corradini M, Costa S, D’Antone I, De Castro S, D’Isep F, Donzella A, Falomkin I V, Fava L, Feliciello A, Ferrero L, Filippini V, Galli D, Garfagnini R, Gastaldi U, Gianotti P, Grasso A, Guaraldo C, Iazzi F, Lanaro A, Lodi Rizzini E, Lombardi M, Lucherini V, Maggiora A, Marcello S, Marconi U, Maron G, Masoni A, Massa I, Minetti B, Morando M, Montagna P, Nichitiu F, Panzieri D, Pauli G, Piccinini M, Piragino G, Poli M, Pontecorvo G B, Puddu G, Ricci R A, Rossetto E, Rotondi A, Rozhdestvensky A M, Salvini P, Santi L, Sapozhnikov M G, Semprini Cesari N, Serci S, Temnikov P, Tessaro S, Tosello F, Tretyak V I, Usai G L, Vannucci L, Vedovato G, Venturelli L, Villa M, Vitale A, Zavattini G, Zenoni A, Zoccoli A, Zosi G 1993 Phys. Rev. A 47 4517Google Scholar

    [15]

    Schiwietz G, Wille U, Muiño R D, Fainstein P D, Grande P L 1996 J. Phys. B At. Mol. Opt. Phys. 29 307Google Scholar

    [16]

    Porter L E 2004 Advances in Quantum Chemistry (Pullman: Academic Press) pp91–119

    [17]

    Pandey M K, Lin Y C, Ho Y K 2012 Phys. Plasmas 19 062104Google Scholar

    [18]

    Bimbot R, Geissel H, Paul H, Schinner A, Sigmund P, Wambersie A, Deluca P, Seltzer S M 2005 J. ICRU 5 44Google Scholar

    [19]

    Lindhard J 1976 Nucl. Instrum. Methods Phys. Res. Sect. B 132 1Google Scholar

    [20]

    Makarov D N, Matveev V I 2015 J. Exp. Theor. Phys. 120 772Google Scholar

    [21]

    Griffin D C 1989 Phys. Scr. T28 17Google Scholar

    [22]

    Purkait M, Dhara A, Sounda S, Mandal C R 2001 J. Phys. B At. Mol. Opt. Phys. 34 755Google Scholar

    [23]

    Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar

    [24]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [25]

    Schiwietz G, Grande P L 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 175–177 125Google Scholar

    [26]

    Matveev V I, Makarov D N 2011 JETP Lett. 94 1Google Scholar

    [27]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press) pp17–48

  • [1] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展.  , 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241290
    [3] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望.  , 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [4] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置.  , 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [5] 浦实, 肖博文, 周剑, 周雅瑾. 高能重离子超边缘碰撞中极化光致反应.  , 2023, 72(7): 072503. doi: 10.7498/aps.72.20230074
    [6] 李桃桃, 苑航, 王兴, 张震, 郭大龙, 朱小龙, 闫顺成, 赵冬梅, 张少锋, 许慎跃, 马新文. 50-keV/u Ne8+离子碰撞导致的$\bf{{\text{C}}_3}{\text{H}}_4^{2 + }$三体解离机制.  , 2022, 71(9): 093401. doi: 10.7498/aps.71.20212202
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [8] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [9] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究.  , 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [10] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , 2021, (): . doi: 10.7498/aps.70.20211663
    [11] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线.  , 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [12] 徐秋梅, 杨治虎, 郭义盼, 刘会平, 陈燕红, 赵红赟. 低速Xeq+(4q20)离子与Ni表面碰撞中的光辐射.  , 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [13] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应.  , 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [14] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究.  , 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [15] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响.  , 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [16] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响.  , 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [17] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究.  , 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [18] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额.  , 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [19] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究.  , 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [20] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线.  , 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
计量
  • 文章访问数:  3725
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 修回日期:  2022-10-29
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回
Baidu
map