搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

少电子离子束缚态电子g因子精密测量

屠秉晟

引用本文:
Citation:

少电子离子束缚态电子g因子精密测量

屠秉晟

Precise measurements of electron g factors in bound states of few-electron ions

Tu Bing-Sheng
cstr: 32037.14.aps.73.20240683
PDF
HTML
导出引用
  • 少电子离子束缚态电子g因子的精密测量是借助原子分子体系研究束缚态量子电动力学(QED)理论的有效途径. 特别是在高电荷态重核体系中, 原子核与内壳层电子之间极强的电磁相互作用为研究极端电磁场环境下的QED效应提供了独一无二的条件. 通过精确测量束缚态电子g因子, 还可以分析核效应、测定核结构参数、确定基本物理常数等. 少电子离子束缚态电子g因子的研究已经成为精密谱学方向的前沿课题. 潘宁离子阱(借助稳态电磁场囚禁离子的系统)是进行g因子测量的有效实验装置之一. 本综述将对基于潘宁离子阱开展少电子离子束缚态电子g因子的实验研究进行全面回顾, 介绍基本实验原理与测量方法, 重点论述该领域在近几年中的重要实验成果, 并对未来发展进行简要展望.
    The electron g factor is an important fundamental structural parameter in atomic physics, as it reveals various mechanisms of interactions between electrons and external fields. Precise measurements of g factors of bound electrons in simple atomic and molecular systems provide an effective method for investigating the bound-state quantum electrodynamics (QED) theory. Especially in highly-charged heavy ions (HCIs), the strong electromagnetic interactions between the nuclei and inner-shell electrons provide unique opportunities to test QED under extremely strong fields. Accurate measurements of the g factors of the bound-state electrons are also important for determining nuclear effects, nuclear parameters and fundamental constants. The research on g factors of the bound-state electrons has become a frontier topic in fundamental physics. A Penning trap, which uses steady-state electromagnetic fields to confine charged particles, is utilized to precisely measure the g factor. This paper presents a comprehensive review of the experiments on g factors for few-electron simple systems in Penning traps, including experimental principles, experimental setups, measurement methods, and a summary of important research findings. The physical concept of the electron g factor and its historical research background are introduced. The electron g factor is considered as an effective probe to study higher-order QED effects. Through high-precision measurements of the free electron g factor, discrepancies between the fine-structure constants and other experimental results in atomic physics are identified. Notably, the g factor of the 1s electron in HCIs deviates significantly from the value for free electrons as the atomic number increases. Experimental principles, including the principle of the Penning trap and the principle of measuring the bound-state electron g factors are discussed. A double-trap experiment setup and related precision measurement techniques are also introduced.This paper reviews several milestone experiments including (1) the stringent test of bound-state QED by precise measurement of bound-state electron g factor of a 118Sn49+ ion, (2) measurement of the g factors of lithium-like and boron-like ions and their applications, and (3) measurement of the g-factor isotope shift by using an advanced two-ion balance technique in the Penning trap, providing an insight into the QED effects in nuclear recoil. Finally, this paper summarizes the challenges currently faced in measuring the g factors of bound-state electrons in few-electron ion systems and provides the prospects for the future developments of this field.
      通信作者: 屠秉晟, bingshengtu@fudan.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1602504)、国家自然科学基金(批准号: 12204110)和上海浦江人才计划(批准号: 22PJ1401100)资助的课题.
      Corresponding author: Tu Bing-Sheng, bingshengtu@fudan.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602504), the National Natural Science Foundation of China (Grant No. 12204110), and the Shanghai Pujiang Talent Program (Grant No. 22PJ1401100).
    [1]

    Landé A 1921 Z. Für Phys. 5 231

    [2]

    Kusch P, Foley H M 1947 Phys. Rev. 72 1256

    [3]

    Kinoshita T 1990 Advanced Series on Directions in HighEnergy Physics (Singapore: World Scientific) pp218-321

    [4]

    Schwinger J 1948 Phys. Rev. 73 416Google Scholar

    [5]

    Laporta S, Remiddi E 1996 Phys. Lett. B 379 283Google Scholar

    [6]

    Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807Google Scholar

    [7]

    Fan X, Myers T G, Sukra B A D, Gabrielse G 2023 Phys. Rev. Lett. 130 071801Google Scholar

    [8]

    Shabaev V M, Glazov D A, Plunien G, Volotka A V 2015 J. Phys. Chem. Ref. Data 44 031205Google Scholar

    [9]

    Breit G 1928 Nature 122 649

    [10]

    Werth G, Sturm S, Blaum K 2018 Adv. At. Mol. Opt. Phys. 67 257

    [11]

    Sturm S, Arapoglou I, Egl A, Höcker M, Kraemer S, Sailer T, Tu B, Weigel A, Wolf R, López-Urrutia J C, Blaum K 2019 Eur. Phys. J. Spec. Top. 227 1425Google Scholar

    [12]

    Heiße F, Door M, Sailer T, Filianin P, Herkenhoff J, König C M, Kromer K, Lange D, Morgner J, Rischka A, Schweiger C, Tu B, Novikov Y N, Eliseev S, Sturm S, Blaum K 2023 Phys. Rev. Lett. 131 253002Google Scholar

    [13]

    Morgner J, Tu B, König C M, Sailer T, Heiße F, Bekker H, Sikora B, Lyu C, Yerokhin V A, Harman Z, Crespo López-Urrutia J R, Keitel C H, Sturm S, Blaum K 2023 Nature 622 53Google Scholar

    [14]

    Brown L S, Gabrielse G 1986 Rev. Mod. Phys. 58 233Google Scholar

    [15]

    Tu B, Si R, Shen Y, Wang J, Wei B, Chen C, Yao K, Zou Y 2023 Phys. Rev. Res. 5 043014Google Scholar

    [16]

    Hermanspahn N, Häffner H, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 84 427Google Scholar

    [17]

    Sturm S, Wagner A, Schabinger B, Blaum K 2011 Phys. Rev. Lett. 107 143003Google Scholar

    [18]

    Häffner H, Beier T, Hermanspahn N, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 85 5308Google Scholar

    [19]

    Verdú J, Djekić S, Stahl S, Valenzuela T, Vogel M, Werth G, Beier T, Kluge H J, Quint W 2004 Phys. Rev. Lett. 92 093002Google Scholar

    [20]

    Sturm S, Wagner A, Schabinger B, Zatorski J, Harman Z, Quint W, Werth G, Keitel C H, Blaum K 2011 Phys. Rev. Lett. 107 023002Google Scholar

    [21]

    Martínez A J G, López-Urrutia J R C, Fischer D, Orts R S, Ullrich J 2007 J. Phys. Conf. Ser. 72 012001Google Scholar

    [22]

    Zinenko D V, Glazov D A, Kosheleva V P, Volotka A V, Fritzsche S 2023 Phys. Rev. A 107 032815Google Scholar

    [23]

    Kosheleva V P, Volotka A V, Glazov D A, Zinenko D V, Fritzsche S 2022 Phys. Rev. Lett. 128 103001Google Scholar

    [24]

    Arapoglou I, Egl A, Höcker M, Sailer T, Tu B, Weigel A, Wolf R, Cakir H, Yerokhin V A, Oreshkina N S, Agababaev V A, Volotka A V, Zinenko D V, Glazov D A, Harman Z, Keitel C H, Sturm S, Blaum K 2019 Phys. Rev. Lett. 122 253001Google Scholar

    [25]

    Shabaev V M, Glazov D A, Oreshkina N S, Volotka A V, Plunien G, Kluge H J, Quint W 2006 Phys. Rev. Lett. 96 253002Google Scholar

    [26]

    Yerokhin V A, Berseneva E, Harman Z, Tupitsyn I I, Keitel C H 2016 Phys. Rev. Lett. 116 100801Google Scholar

    [27]

    Köhler F, Blaum K, Block M, Chenmarev S, Eliseev S, Glazov D A, Goncharov M, Hou J, Kracke A, Nesterenko D A, Novikov Y N, Quint W, Minaya Ramirez E, Shabaev V M, Sturm S, Volotka A V, Werth G 2016 Nat. Commun. 7 10246Google Scholar

    [28]

    Sailer T, Debierre V, Harman Z, Heiße F, König C, Morgner J, Tu B, Volotka A V, Keitel C H, Blaum K, Sturm S 2022 Nature 606 479Google Scholar

    [29]

    Debierre V, Keitel C H, Harman Z 2020 Phys. Lett. B 807 135527Google Scholar

    [30]

    Schneider A, Sikora B, Dickopf S, Müller M, Oreshkina N S, Rischka A, Valuev I A, Ulmer S, Walz J, Harman Z, Keitel C H, Mooser A, Blaum K 2022 Nature 606 878Google Scholar

    [31]

    Kaiser A, Dickopf S, Door M, Behr R, Beutel U, Eliseev S, Kaushik A, Kromer K, Müller M, Palafox L, Ulmer S, Mooser A, Blaum K 2024 Appl. Phys. Lett. 124 224002Google Scholar

    [32]

    Devlin J A, Wursten E, Harrington J A, Higuchi T, Blessing P E, Borchert M J, Erlewein S, Hansen J J, Morgner J, Bohman M A, Mooser A H, Smorra C, Wiesinger M, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Ulmer S 2019 Phys. Rev. Appl. 12 , 044012 DOI: 10.1103/PhysRevApplied.12.044012

    [33]

    Ketter J, Eronen T, Höcker M, Streubel S, Blaum K 2014 Int. J. Mass Spectrom. 358 1Google Scholar

    [34]

    Tu B, Hahne F, Arapoglou I, Egl A, Heiße F, Höcker M, König C, Morgner J, Sailer T, Weigel A, Wolf R, Sturm S 2021 Adv. Quantum Technol. 4 2100029Google Scholar

    [35]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, BASE Collaboration 2021 Nature 596 514Google Scholar

    [36]

    Will C, Wiesinger M, Micke P, Yildiz H, Driscoll T, Kommu S, Abbass F, Arndt B P, Bauer B B, Erlewein S, Fleck M, Jäger J I, Latacz B M, Mooser A, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Devlin J A, Ospelkaus C, Quint W, Soter A, Walz J, Smorra C, Ulmer S 2024 Phys. Rev. Lett. 133 023002Google Scholar

  • 图 1  自由电子g因子最低阶QED修正的费曼图描述, 直线代表自由传播的电子, 三角形表示电磁场而曲线表示电子与电磁场作用中的虚光子 (a)自能效应; (b)真空极化效应

    Fig. 1.  Feynman diagrams of the first-order QED corrections of the free electron g-factor, the straight line represents the electron, curved lines as the photons and the triangle as the magnetic field: (a) The self-energy term; (b) the vacuum-polarization term.

    图 2  类氢离子1s电子g因子与平均电场强度随原子序数Z的依赖关系

    Fig. 2.  g factor of 1s electron and the mean electromagnetic field as a function of atomic number Z.

    图 3  类氢离子基态g因子的高阶QED贡献与原子核效应随原子序数的依赖关系, 数据(图片)来自文献[11]

    Fig. 3.  Relative contributions of the g factors of H-like ions as a function of atomic number Z, from Ref. [11].

    图 4  潘宁离子阱剖面结构图, 离子运动与镜像电流测量原理示意图(图中部分素材由马克斯普朗克核物理研究所提供)

    Fig. 4.  Cut model of Penning traps with illustration of ion motion and image current detection system (some of the materials in the image are provided by the Max-Planck-Institute for Nuclear Physics).

    图 5  12C5+离子拉莫频率共振谱, 数据(图片)来自文献[16]

    Fig. 5.  Larmor resonance of 12C5+ bound-state electron, from Ref. [16].

    图 6  双阱实验装置剖面示意图, 图片来自文献[18]

    Fig. 6.  Cut model of double penning trap system in Mainz, from Ref. [18].

    图 7  基于双阱实验装置的g因子测量共振谱, 图片来自文献[18]

    Fig. 7.  g-factor resonance spectrum from double Penning trap system in Mainz, from Ref. [18].

    图 8  ALPHATRAP实验系统示意图, 高电荷态重离子由Heidelberg EBIT中产生, 离子束团引出后经过电荷态筛选、偏转、减速、聚焦后被潘宁阱俘获, 手动低温阀可以用来隔离室温束线与低温离子阱的真空环境, 保证离子阱内部真空度优于10–17 torr, 图片来自文献[13]

    Fig. 8.  Schematic diagram of the ALPHATRAP experiment, the highly charged ions are produced in the Heidelberg EBIT, the ions are extracted, with charge-state selection, and injected into the Penning trap, the cryogenic valve can be closed to isolate the trap vacuum from the beamline, resulting in a vacuum better than 10–17 torr, from Ref. [13].

    图 9  类锂离子基态g因子的高阶QED贡献, 电子-电子关联效应、Screened QED效应、原子核效应随原子序数的依赖关系, 数据(图片)来自文献[10]

    Fig. 9.  Relative contributions (QED corrections, interelectronic interaction and screened QED) of the g factors of Li-like ions as a function of atomic number Z, from Ref. [10].

    表 1  类氢12C5+, 16O7+, 20Ne9+, 28Si13+118Sn49+基态g因子计算与实验数据表

    Table 1.  Experimental and theoretical g factors of 12C5+, 16O7+, 20Ne9+, 28Si13+118Sn49+.

    12C5+ 16O7+ 20Ne9+ 28Si13+ 118Sn49+
    gDirac 1.99872135439(1) 1.99772600306(2) 1.99644517090 1.9930235716 1.90807920530
    Free QED 0.00231930437(1) 0.00231930437(1) 0.00231930435 0.00231930437(1) 0.00231930435
    BS-QED 0.00000084340(3) 0.00000159438(11) 0.00000265069(12) 0.0000058558(17) 0.000148098(298)
    FNS 0.00000000041 0.00000000155(1) 0.000 00000476(1) 0.000000 205 0.000014489(24)
    NR 0.00000008762 0.00000011697 0.00000014641 0.0000002051(1) 0.000000726
    Hadronic –0.000000002
    gtheo 2.00104159018(3) 2.00004702128(11) 1.99876727711(12) 1.995348958 0(17) 1.910561821(299)
    gexp 2.0010415964(45) 2.0000470254(46) 1.99876727699(19) 1.99534895910(81) 1.910562058962(914)
    注: gDirac 代表Dirac方程计算的g因子值, Free QED代表自由(电子)QED效应贡献, BS-QED代表束缚态(电子)QED效应贡献, FNS代表核尺寸效应贡献, NR代表核反冲效应贡献, Hadronic代表强子效应贡献. 12C5+, 16O7+, 28Si13数据来自于文献[10], 20Ne9+的数据来自于文献[12], 118Sn49+的数据来自于文献[13].
    下载: 导出CSV

    表 2  28Si11+, 40Ca17+40Ar13+基态g因子计算与实验数据表

    Table 2.  Theoretical and experimental g factors of 28Si11+, 40Ca17+ and 40Ar13+.

    28Si11+ 40Ca17+ 40Ar13
    gDirac 1.9982547533 1.9964260253 0.66377545
    QED 0.0023202857 (17) 0.0023216601(17) –0.0007682(4)
    e-e int. 0.000314 8098 (22) 0.0004542910 (24) 0.0006500(2)
    FNS + NR 0.0000000436 0.0000000662 –0.0000091(2)
    gtheo 2.000889 8924 (28) 1.9992020426 (29) 0.6636482 (5)
    gexp 2.00088988845 (14) 1.9992020405 (11) 0.66364845532(93)
    注: QED代表经过屏蔽势修正后的束缚态QED效应, e-e int.代表电子-电子关联效应贡献; 28Si11+40Ca17+数据来自于文献[23], 40Ar13数据来自于文献[24].
    下载: 导出CSV

    表 3  20Ne9+22Ne9+基态g因子差以及相关核效应贡献的计算值, 数据来自文献[28]

    Table 3.  Contributions of the g-factor difference of 20Ne9+ and 22Ne9+ as well as the experimental result, from Ref. [28]

    效应贡献 $ {{\Delta }}g=g\left({}_{}{}^{20}{{\mathrm{N}}{\mathrm{e}}}_{}^{9+}\right)-g\left({}_{}{}^{22}{{\mathrm{N}}{\mathrm{e}}}_{}^{9+}\right) $
    ($ \times {10}^{-9} $)
    FNS 0.166(11)
    Recoil, non-QED 13.2827
    Recoil, QED 0.0435
    Recoil, (α/π)(me/M) –0.0103
    Recoil, (me/M)2 –0.0077
    Nuclear polarization 0.0001(3)
    Δg total theory 13.474(11)
    Δg experiment 13.47524(53)stat(99)sys
    下载: 导出CSV
    Baidu
  • [1]

    Landé A 1921 Z. Für Phys. 5 231

    [2]

    Kusch P, Foley H M 1947 Phys. Rev. 72 1256

    [3]

    Kinoshita T 1990 Advanced Series on Directions in HighEnergy Physics (Singapore: World Scientific) pp218-321

    [4]

    Schwinger J 1948 Phys. Rev. 73 416Google Scholar

    [5]

    Laporta S, Remiddi E 1996 Phys. Lett. B 379 283Google Scholar

    [6]

    Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807Google Scholar

    [7]

    Fan X, Myers T G, Sukra B A D, Gabrielse G 2023 Phys. Rev. Lett. 130 071801Google Scholar

    [8]

    Shabaev V M, Glazov D A, Plunien G, Volotka A V 2015 J. Phys. Chem. Ref. Data 44 031205Google Scholar

    [9]

    Breit G 1928 Nature 122 649

    [10]

    Werth G, Sturm S, Blaum K 2018 Adv. At. Mol. Opt. Phys. 67 257

    [11]

    Sturm S, Arapoglou I, Egl A, Höcker M, Kraemer S, Sailer T, Tu B, Weigel A, Wolf R, López-Urrutia J C, Blaum K 2019 Eur. Phys. J. Spec. Top. 227 1425Google Scholar

    [12]

    Heiße F, Door M, Sailer T, Filianin P, Herkenhoff J, König C M, Kromer K, Lange D, Morgner J, Rischka A, Schweiger C, Tu B, Novikov Y N, Eliseev S, Sturm S, Blaum K 2023 Phys. Rev. Lett. 131 253002Google Scholar

    [13]

    Morgner J, Tu B, König C M, Sailer T, Heiße F, Bekker H, Sikora B, Lyu C, Yerokhin V A, Harman Z, Crespo López-Urrutia J R, Keitel C H, Sturm S, Blaum K 2023 Nature 622 53Google Scholar

    [14]

    Brown L S, Gabrielse G 1986 Rev. Mod. Phys. 58 233Google Scholar

    [15]

    Tu B, Si R, Shen Y, Wang J, Wei B, Chen C, Yao K, Zou Y 2023 Phys. Rev. Res. 5 043014Google Scholar

    [16]

    Hermanspahn N, Häffner H, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 84 427Google Scholar

    [17]

    Sturm S, Wagner A, Schabinger B, Blaum K 2011 Phys. Rev. Lett. 107 143003Google Scholar

    [18]

    Häffner H, Beier T, Hermanspahn N, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 85 5308Google Scholar

    [19]

    Verdú J, Djekić S, Stahl S, Valenzuela T, Vogel M, Werth G, Beier T, Kluge H J, Quint W 2004 Phys. Rev. Lett. 92 093002Google Scholar

    [20]

    Sturm S, Wagner A, Schabinger B, Zatorski J, Harman Z, Quint W, Werth G, Keitel C H, Blaum K 2011 Phys. Rev. Lett. 107 023002Google Scholar

    [21]

    Martínez A J G, López-Urrutia J R C, Fischer D, Orts R S, Ullrich J 2007 J. Phys. Conf. Ser. 72 012001Google Scholar

    [22]

    Zinenko D V, Glazov D A, Kosheleva V P, Volotka A V, Fritzsche S 2023 Phys. Rev. A 107 032815Google Scholar

    [23]

    Kosheleva V P, Volotka A V, Glazov D A, Zinenko D V, Fritzsche S 2022 Phys. Rev. Lett. 128 103001Google Scholar

    [24]

    Arapoglou I, Egl A, Höcker M, Sailer T, Tu B, Weigel A, Wolf R, Cakir H, Yerokhin V A, Oreshkina N S, Agababaev V A, Volotka A V, Zinenko D V, Glazov D A, Harman Z, Keitel C H, Sturm S, Blaum K 2019 Phys. Rev. Lett. 122 253001Google Scholar

    [25]

    Shabaev V M, Glazov D A, Oreshkina N S, Volotka A V, Plunien G, Kluge H J, Quint W 2006 Phys. Rev. Lett. 96 253002Google Scholar

    [26]

    Yerokhin V A, Berseneva E, Harman Z, Tupitsyn I I, Keitel C H 2016 Phys. Rev. Lett. 116 100801Google Scholar

    [27]

    Köhler F, Blaum K, Block M, Chenmarev S, Eliseev S, Glazov D A, Goncharov M, Hou J, Kracke A, Nesterenko D A, Novikov Y N, Quint W, Minaya Ramirez E, Shabaev V M, Sturm S, Volotka A V, Werth G 2016 Nat. Commun. 7 10246Google Scholar

    [28]

    Sailer T, Debierre V, Harman Z, Heiße F, König C, Morgner J, Tu B, Volotka A V, Keitel C H, Blaum K, Sturm S 2022 Nature 606 479Google Scholar

    [29]

    Debierre V, Keitel C H, Harman Z 2020 Phys. Lett. B 807 135527Google Scholar

    [30]

    Schneider A, Sikora B, Dickopf S, Müller M, Oreshkina N S, Rischka A, Valuev I A, Ulmer S, Walz J, Harman Z, Keitel C H, Mooser A, Blaum K 2022 Nature 606 878Google Scholar

    [31]

    Kaiser A, Dickopf S, Door M, Behr R, Beutel U, Eliseev S, Kaushik A, Kromer K, Müller M, Palafox L, Ulmer S, Mooser A, Blaum K 2024 Appl. Phys. Lett. 124 224002Google Scholar

    [32]

    Devlin J A, Wursten E, Harrington J A, Higuchi T, Blessing P E, Borchert M J, Erlewein S, Hansen J J, Morgner J, Bohman M A, Mooser A H, Smorra C, Wiesinger M, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Ulmer S 2019 Phys. Rev. Appl. 12 , 044012 DOI: 10.1103/PhysRevApplied.12.044012

    [33]

    Ketter J, Eronen T, Höcker M, Streubel S, Blaum K 2014 Int. J. Mass Spectrom. 358 1Google Scholar

    [34]

    Tu B, Hahne F, Arapoglou I, Egl A, Heiße F, Höcker M, König C, Morgner J, Sailer T, Weigel A, Wolf R, Sturm S 2021 Adv. Quantum Technol. 4 2100029Google Scholar

    [35]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, BASE Collaboration 2021 Nature 596 514Google Scholar

    [36]

    Will C, Wiesinger M, Micke P, Yildiz H, Driscoll T, Kommu S, Abbass F, Arndt B P, Bauer B B, Erlewein S, Fleck M, Jäger J I, Latacz B M, Mooser A, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Devlin J A, Ospelkaus C, Quint W, Soter A, Walz J, Smorra C, Ulmer S 2024 Phys. Rev. Lett. 133 023002Google Scholar

  • [1] 肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军. 极紫外波段的少电子原子精密光谱测量.  , 2024, 73(20): 204205. doi: 10.7498/aps.73.20241231
    [2] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊. 锁相放大器的研究进展.  , 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [3] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息.  , 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [4] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [5] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流.  , 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [6] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量.  , 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , 2021, (): . doi: 10.7498/aps.70.20211663
    [8] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验.  , 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [9] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展.  , 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [10] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法.  , 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [11] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量.  , 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [12] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标.  , 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [13] 李明, 姚宁, 冯志波, 韩红培, 赵正印. 外加电场和Al组分对纤锌矿AlGaN/GaN量子阱中的电子g因子的影响.  , 2018, 67(5): 057101. doi: 10.7498/aps.67.20172213
    [14] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展.  , 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [15] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究.  , 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [16] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究.  , 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [17] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy. 高迁移率InGaAs/InP量子阱中的有效g因子.  , 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [18] 徐海红, 焦中兴, 刘晓东, 雷 亮, 文锦辉, 王 惠, 林位株, 赖天树. GaAs中电子g因子的温度和能量依赖性的飞秒激光吸收量子拍研究.  , 2006, 55(5): 2618-2622. doi: 10.7498/aps.55.2618
    [19] 杨 柳, 殷春浩, 焦 扬, 张 雷, 宋 宁, 茹瑞鹏. 掺入Ni元素的LiCoO2晶体光谱结构及电子顺磁共振g因子.  , 2006, 55(4): 1991-1996. doi: 10.7498/aps.55.1991
    [20] 张红梅, 马东平, 刘德. LiNbO_3:Ni~(2+)的常压能谱和g因子.  , 2002, 51(7): 1554-1558. doi: 10.7498/aps.51.1554
计量
  • 文章访问数:  729
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-09-13
  • 上网日期:  2024-09-18
  • 刊出日期:  2024-10-20

/

返回文章
返回
Baidu
map