Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Decay law of allowed and forbidden transitions in -decay half-lives

Zhang Shao-Qing Xie Juan Zhang Xiao-Ping Zhi Qi-Jun

Citation:

Decay law of allowed and forbidden transitions in -decay half-lives

Zhang Shao-Qing, Xie Juan, Zhang Xiao-Ping, Zhi Qi-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • -beta-decay half-lives are not only important parameters for studying the structures and decay properties of the exotic nucleus far from stability, but also basic parameters for understanding the astrophysical phenomenon. Astrophysicists need exact data of -decay half-lives as input to build nucleosynthesis models for understanding the elements abundances of our universe and solar system. For nuclei far from stability, experimental synthesis and further measurements on their half-lives are rather difficult due to the rarity and radioactivity of target material for synthesizing these nuclei. In theoretical respect, although there are many models such as finite-range droplet model plus quasi-particle random-phase approximation (QRPA), microscopic density functional theory plus QRPA, Hatree-Fock-Bogoliubov theory plus QRPA, and shell model etc., it is still a challenge to calculate -decay half-lives in a reliable way for nuclei far from the -stable line, partly because of the intrinsic complexity of nuclear multi-body problem. In empirical respect, Sargent made an empirical study of -decay half-lives in 1933 and discovered a law which is consistent with the Fermi -decay theory proposed one year later. From then on, there have been a few parametric models based on some of real physical behaviors, which describe complex quantum many-body systems, such as the Kratz-Herrmann formula and the gross theory. Recently, Zhang et al. discovered an exponential law describing -decay half-lives and the nucleon number (Z,N) of parent nuclei far from the stable line. A formula is proposed to calculate the -decay half-lives of nuclei far from stability, which can describe experimental data reasonably well. However, the differences between allowed transitions and forbidden transitions are not fully considered in this formula. Zhang et al. used a set of parameters to describe both allowed transitions and forbidden transitions. In this paper, we consider the different -decay half-lives of allowed transitions and forbidden transitions, and propose an updated parameterization of this formula. A set of parameters is obtained through fitting experimental data of different kinds of transitions with a least-square method. With these new parameters, the theoretical calculation results are in good agreement with the experimental values. The calculation accuracy is improved compared with previous version. By comparison with the complicated and time-consuming microscopic calculation, the improved exponential formula can give the results of -decay half-lives for the allowed transitions and the forbidden transitions in an effective and reliable way. According to the updated formula, we predict half-lives of --decay half-lives of some unknown nuclei far from the -stable line. These predictions are very useful references for the experimental study of --decay of nuclei far from stability and for astrophysical applications.
      Corresponding author: Zhi Qi-Jun, qjzhi@gznu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11165006, 11565010, 11365006), Guizhou Province Science and Technology Innovation Talent Team, China (Grant No. (2015) 4015), the Innovation Team Foundation of the Education Department of Guizhou Province, China (Grant No. [2014]35), the Training Program for Excellent Young Talents in Science and Technology of Guizhou Province, China (Grant No. 2011-29), the International Science and Technology Cooperation Program of Guizhou Province, China (Grant No. 20117026), Science and Technology Department of Guizhou Province, and Scientific and Technological Cooperation Projects of Guizhou Normal University, China (Grant No. LKS[2011]17), the Scientific Research Program for the Returned Overseas Chinese Scholars of Guizhou Province, China (Grant No. 2013-03), and the Foundation for Development of Science and Technology of Macau, China (Grant Nos. 068/2011/A, 048/2012/A2, 091/2013/A3, 020/2014/A1).
    [1]

    Lee T D, Yang C N 1956 Phys. Rev. 104 254

    [2]

    Feimi E 1934 Z. Phys. 88 161

    [3]

    Feynman R P, Gell-Mann M 1958 Phys. Rev. 109 193

    [4]

    Sudarshan E C G, Marshak R E 1958 Phys. Rev. 109 1860

    [5]

    Mller P, Nix J R, Kratz K L 1997 At. Data Nucl. Data Tables 66 131

    [6]

    Borzov I 2006 Nucl. Phys. A 777 645

    [7]

    Engel J, Bender M, Dobaczewski J, Nazarewicz W, Surman R 1999 Phys. Rev. C 60 014302

    [8]

    Ni D D, Ren Z Z, Zhi Q J 2011 Sci. China: Phys. Mech. Astron. 55 2397

    [9]

    Zhi Q J, Caurier E, Cuenca-Garca J J, Langanke K, Martnez-Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803

    [10]

    Nabi J U, Klapdor-Kleingrothaus H V 2004 At. Data Nucl. Data Tables 88 237

    [11]

    Vogel P, Zirnbauer M R 1986 Phys. Rev. Lett. 57 3148

    [12]

    Koonin S E 1991 Nature 354 468

    [13]

    Haxton W C, Johnson C 1990 Phys. Rev. Lett. 65 1325

    [14]

    Langanke K, Martnez R, Guerra E M 2005 Eur. Phys. J. A 24 193

    [15]

    Sarriguren P, lavarez-Rodrguez R, Guerra E M 2005 Eur. Phys. J. A 24 193

    [16]

    Pantis G, imkovic F, Vergados J D, Faessler A 1996 Phys. Rev. C 53 695

    [17]

    Zhi Q J, Zheng Q 2011 Acta Phys. Sin. 60 102301 (in Chinese) [支启军, 郑强 2011 60 102301]

    [18]

    Zhang Y M, Xu F R 2008 Acta Phys. Sin. 57 4826 (in Chinese) [张玉美, 许甫荣 2008 57 4826]

    [19]

    Kratz K-L, Herrmann G 1973 Z. Phys. 263 435

    [20]

    Pfeiffer B, Kratz K L, Mller P 2002 Prog. Nucl. Energy 41 39

    [21]

    Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470

    [22]

    Zhang X P, Ren Z Z 2006 Phys. Rev. C 73 014305

    [23]

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Vol. 2)(Bijing: Atomic Energy Press) pp129-146 (in Chinese) [卢希庭, 江栋兴, 叶沿林 2000 原子核物理(北 京: 原子能出版社) 第129-146页]

    [24]

    Smith C M H 1965 A Textbook of Nuclear Physics (Vol. 1)(Oxford: Pergamon) pp140-145

    [25]

    Evans R D 1955 The Atomic Nucleus (Vol. 1)(New York: McGraw-Hill) pp200-210

    [26]

    Zhang X P, Ren Z Z, Zhi Q J, Zhang Q 2007 J. Phys. G 34 2611

    [27]

    National Nuclear Data Center On-line Retrieval System 2014 Nuclear Strucre -Decay Data (New York: Brookhaven National Laboratory)

  • [1]

    Lee T D, Yang C N 1956 Phys. Rev. 104 254

    [2]

    Feimi E 1934 Z. Phys. 88 161

    [3]

    Feynman R P, Gell-Mann M 1958 Phys. Rev. 109 193

    [4]

    Sudarshan E C G, Marshak R E 1958 Phys. Rev. 109 1860

    [5]

    Mller P, Nix J R, Kratz K L 1997 At. Data Nucl. Data Tables 66 131

    [6]

    Borzov I 2006 Nucl. Phys. A 777 645

    [7]

    Engel J, Bender M, Dobaczewski J, Nazarewicz W, Surman R 1999 Phys. Rev. C 60 014302

    [8]

    Ni D D, Ren Z Z, Zhi Q J 2011 Sci. China: Phys. Mech. Astron. 55 2397

    [9]

    Zhi Q J, Caurier E, Cuenca-Garca J J, Langanke K, Martnez-Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803

    [10]

    Nabi J U, Klapdor-Kleingrothaus H V 2004 At. Data Nucl. Data Tables 88 237

    [11]

    Vogel P, Zirnbauer M R 1986 Phys. Rev. Lett. 57 3148

    [12]

    Koonin S E 1991 Nature 354 468

    [13]

    Haxton W C, Johnson C 1990 Phys. Rev. Lett. 65 1325

    [14]

    Langanke K, Martnez R, Guerra E M 2005 Eur. Phys. J. A 24 193

    [15]

    Sarriguren P, lavarez-Rodrguez R, Guerra E M 2005 Eur. Phys. J. A 24 193

    [16]

    Pantis G, imkovic F, Vergados J D, Faessler A 1996 Phys. Rev. C 53 695

    [17]

    Zhi Q J, Zheng Q 2011 Acta Phys. Sin. 60 102301 (in Chinese) [支启军, 郑强 2011 60 102301]

    [18]

    Zhang Y M, Xu F R 2008 Acta Phys. Sin. 57 4826 (in Chinese) [张玉美, 许甫荣 2008 57 4826]

    [19]

    Kratz K-L, Herrmann G 1973 Z. Phys. 263 435

    [20]

    Pfeiffer B, Kratz K L, Mller P 2002 Prog. Nucl. Energy 41 39

    [21]

    Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470

    [22]

    Zhang X P, Ren Z Z 2006 Phys. Rev. C 73 014305

    [23]

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Vol. 2)(Bijing: Atomic Energy Press) pp129-146 (in Chinese) [卢希庭, 江栋兴, 叶沿林 2000 原子核物理(北 京: 原子能出版社) 第129-146页]

    [24]

    Smith C M H 1965 A Textbook of Nuclear Physics (Vol. 1)(Oxford: Pergamon) pp140-145

    [25]

    Evans R D 1955 The Atomic Nucleus (Vol. 1)(New York: McGraw-Hill) pp200-210

    [26]

    Zhang X P, Ren Z Z, Zhi Q J, Zhang Q 2007 J. Phys. G 34 2611

    [27]

    National Nuclear Data Center On-line Retrieval System 2014 Nuclear Strucre -Decay Data (New York: Brookhaven National Laboratory)

  • [1] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [2] Qing Wen-Tao, Zhi Qi-Jun, Yang You-Chang. Calculations of electron capture rates of 66Fe in astrophysical enviroment. Acta Physica Sinica, 2022, 71(19): 192101. doi: 10.7498/aps.71.20220929
    [3] Li Ting, Lu Xiao-Tong, Zhou Chi-Hua, Yin Mo-Juan, Wang Ye-Bing, Chang Hong. Zero-crossing temperature of ultra-stable optical reference cavity measured by optical transition spectrum. Acta Physica Sinica, 2021, 70(7): 073701. doi: 10.7498/aps.70.20201721
    [4] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [5] Chen Ze, Zhang Xiao-Ping, Yang Hong-Ying, Zheng Qiang, Chen Na-Na, Zhi Qi-Jun. β--decay half-lives for waiting point nucleiaround N=82. Acta Physica Sinica, 2014, 63(16): 162301. doi: 10.7498/aps.63.162301
    [6] Jiang Yong-Hong, Sun Wei-Guo, Zhang Yi, Fu Jia, Fan Qun-Chao, Li Hui-Dong, Feng Hao. Study on P-branch emission spectral lines of AuO molecule using improved analytical formula. Acta Physica Sinica, 2013, 62(21): 213301. doi: 10.7498/aps.62.213301
    [7] Fu Jia, Fan Qun-Chao, Sun Wei-Guo, Hu Shi, Jiang Yong-Hong. Studies on the R-branch emission spectral lines of VN molecules. Acta Physica Sinica, 2013, 62(23): 233301. doi: 10.7498/aps.62.233301
    [8] Fan Qun-Chao, Sun Wei-Guo, Li Hui-Dong, Feng Hao. P-branch spectral lines of rovibrational transitions of CO molecule in ground state. Acta Physica Sinica, 2011, 60(6): 063301. doi: 10.7498/aps.60.063301
    [9] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [10] Song Xiao-Shu, Cheng Xin-Lu, Yang Xiang-Dong, Linghu Rong-Feng. Line intensities of 3000—0200 and 1001—0110 transition bands of 14N216O at high temperature. Acta Physica Sinica, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [11] Ouyang Yong-Zhong, Yi You-Gen, Zhu Zheng-He, Zheng Zhi-Jian. Magnetic quadrupole M2 2s2 1S0—2s2p3P2(Z=10—103) trangsions for Be-like ions. Acta Physica Sinica, 2007, 56(7): 3880-3886. doi: 10.7498/aps.56.3880
    [12] Wan Jian-Jie, Xie Lu-You, Dong Chen-Zhong, Jiang Jun, Yan Jun. Theoretical study of forbidden M1, M2, E2 transitions for highly charged Ni-like ions. Acta Physica Sinica, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [13] Li Liang-Xin, Hu Yong-Hua. Intersubband and intraband transitions of self-assembled quantum wires for the infrared detectors. Acta Physica Sinica, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [14] Mu Zhi-Dong, Wei Qi-Ying. Theoretical calculation of wavelengths and transition probabilities for magnesium-like CuⅩⅧ. Acta Physica Sinica, 2005, 54(6): 2614-2619. doi: 10.7498/aps.54.2614
    [15] Hou Bi-Hui, Li Yong, Liu Guo-Qing, Zhang Gui-Hua, Liu Feng-Yan, Tao Shi-Quan. ESR study of the Mn2+ center in LiNbO3. Acta Physica Sinica, 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [16] Zhang Xiao-An, Zhao Yong-Tao, Li Fu-Li, Yang Zhi-Hu, Xiao Guo-Qing, Zhan Wen-Long. Atomic and ionic light emission spectra of dipole transition and forbidden transition induced by the impact of 126Xe30+ on Ni solid surface. Acta Physica Sinica, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [17] Yuan Ping, Liu Xin-Sheng, Zhang Yi-Jun, Xie Lu-You, Dong Chen-Zhong. Influence of relaxation and correlation effects on probabilities of the 2s22p3s 3P1—2s22p21D2 and 2s22p3s 1P1—2s22p23P0,1,2 intercombination transitions in NII. Acta Physica Sinica, 2003, 52(3): 561-565. doi: 10.7498/aps.52.561
    [18] YI YOU-GEN, WANG RONG, LI XIANG-DONG, WANG HONG-YAN, ZHU ZHENG-HE. SPIN-FORBIDDEN TRANSITIONS FOR BE-LIKE IONS (Z=10—103). Acta Physica Sinica, 2000, 49(10): 1953-1958. doi: 10.7498/aps.49.1953
    [19] YANG CHUAN-LU, ZHU ZHENG-HE. THEORETICAL CALCULATION OF PRESSURE-BROADENED CROSS SECTION FOR PURE ROTATIONAL DIPOLE TRANSITION OF Hel IN Ar. Acta Physica Sinica, 1999, 48(10): 1852-1857. doi: 10.7498/aps.48.1852
    [20] DONG CHEN-ZHONG, ZHOU XIAO-XIN. THEORETICAL STUDY OF SPECTRA OF 3-2 TRANSITION AND ITS SATELLITE LINES FOR Ne-LIKE ION OF La. Acta Physica Sinica, 1996, 45(4): 556-562. doi: 10.7498/aps.45.556
Metrics
  • Abstract views:  8496
  • PDF Downloads:  298
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2015
  • Accepted Date:  28 December 2015
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map